Learning-augmented Maximum Independent Set
- URL: http://arxiv.org/abs/2407.11364v1
- Date: Tue, 16 Jul 2024 04:05:40 GMT
- Title: Learning-augmented Maximum Independent Set
- Authors: Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, Chen Wang,
- Abstract summary: We study the Maximum Independent Set (MIS) problem on general graphs within the framework of learning-augmented algorithms.
We show that we can break this barrier in the presence of an oracle obtained through predictions from a machine learning model.
- Score: 20.58740333788296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the Maximum Independent Set (MIS) problem on general graphs within the framework of learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to approximate to within a factor of $n^{1-\delta}$ for any $\delta>0$. We show that we can break this barrier in the presence of an oracle obtained through predictions from a machine learning model that answers vertex membership queries for a fixed MIS with probability $1/2+\varepsilon$. In the first setting we consider, the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle returns the correct answer with probability $1/2 + \varepsilon$. Under this setting, we show an algorithm that obtains an $\tilde{O}(\sqrt{\Delta}/\varepsilon)$-approximation in $O(m)$ time where $\Delta$ is the maximum degree of the graph. In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct with probability $1/2 + \varepsilon$. For this setting, we show an $O(1)$-approximation algorithm using $O(n/\varepsilon^2)$ total queries and $\tilde{O}(m)$ runtime.
Related papers
- Gradient Descent is Pareto-Optimal in the Oracle Complexity and Memory Tradeoff for Feasibility Problems [0.0]
We show that to solve feasibility problems with accuracy any deterministic algorithm either uses $d1+delta$ bits of memory or must make at least $1/(d0.01delta epsilon2frac1-delta1+1.01 delta-o(1))$ oracle queries.
We also show that randomized algorithms either use $d1+delta$ memory or make at least $1/(d2delta epsilon2(1-4delta)-o(1))$ queries for any $deltain
arXiv Detail & Related papers (2024-04-10T04:15:50Z) - A quantum algorithm for learning a graph of bounded degree [1.8130068086063336]
We present an algorithm that learns the edges of $G$ in at most $tildeO(d2m3/4)$ quantum queries.
In particular, we present a randomized algorithm that, with high probability, learns cycles and matchings in $tildeO(sqrtm)$ quantum queries.
arXiv Detail & Related papers (2024-02-28T21:23:40Z) - On the Complexity of First-Order Methods in Stochastic Bilevel
Optimization [9.649991673557167]
We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex.
Existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them.
We propose a simple first-order method that converges to an $epsilon$ stationary point using $O(epsilon-6), O(epsilon-4)$ access to first-order $y*$-aware oracles.
arXiv Detail & Related papers (2024-02-11T04:26:35Z) - The Computational Complexity of Finding Stationary Points in Non-Convex Optimization [53.86485757442486]
Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-order but smooth objective functions is a computational problem.
We show that finding approximate KKT points in constrained optimization is reducible to finding approximate stationary points in unconstrained optimization but the converse is impossible.
arXiv Detail & Related papers (2023-10-13T14:52:46Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Learning Graph Partitions [2.3224617218247126]
Given a partition of a graph into connected components, the membership oracle asserts whether any two vertices of the graph lie in the same component or not.
We prove that for $nge kge 2$, learning the components of an $n$-vertex hidden graph with $k$ components requires at least $frac12(n-k)(k-1)$ membership queries.
arXiv Detail & Related papers (2021-12-15T05:28:45Z) - Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization
Domain [11.562923882714093]
We study the problem of finding approximate first-order stationary points in optimization problems of the form $min_x in max_y in Y f(x,y)
Our approach relies upon replacing the function $f(x,cdot)$ with its $kth order Taylor approximation (in $y$) and finding a near-stationary point in $Y$.
arXiv Detail & Related papers (2021-10-08T07:46:18Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Query complexity of heavy hitter estimation [6.373263986460191]
We consider the problem of identifying the subset $mathcalSgamma_mathcalP$ of elements in the support of an underlying distribution $mathcalP$.
We consider two query models: $(a)$ each query is an index $i$ and the oracle return the value $X_i$ and $(b)$ each query is a pair $(i,j)$.
For each of these query models, we design sequential estimation algorithms which at each round, either decide what query to send to the oracle depending on the entire
arXiv Detail & Related papers (2020-05-29T07:15:46Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
We study the problem of agnostic $Q$-learning with function approximation in deterministic systems.
We show that if $delta = Oleft(rho/sqrtdim_Eright)$, then one can find the optimal policy using $Oleft(dim_Eright)$.
arXiv Detail & Related papers (2020-02-17T18:41:49Z) - Tight Quantum Lower Bound for Approximate Counting with Quantum States [49.6558487240078]
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson, Kothari, Kretschmer, and Thaler ( 2020)
The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k'=(1+varepsilon)k$.
arXiv Detail & Related papers (2020-02-17T10:53:50Z) - Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast
Algorithm [100.11971836788437]
We study the fixed-support Wasserstein barycenter problem (FS-WBP)
We develop a provably fast textitdeterministic variant of the celebrated iterative Bregman projection (IBP) algorithm, named textscFastIBP.
arXiv Detail & Related papers (2020-02-12T03:40:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.