Dissipationless topological quantum computation for Majorana objects in sparse-dense mixed encoding process
- URL: http://arxiv.org/abs/2407.11544v2
- Date: Fri, 2 Aug 2024 01:09:42 GMT
- Title: Dissipationless topological quantum computation for Majorana objects in sparse-dense mixed encoding process
- Authors: Ye-Min Zhan, Guan-Dong Mao, Yu-Ge Chen, Yue Yu, Xi Luo,
- Abstract summary: Topological quantum computation based on Majorana objects is subject to a significant challenge.
Some of the two-qubit quantum gates rely on the fermion parity of the qubits.
We devise topological operations that allow for the non-dissipative correction of information from undesired fermion parity to the desired one.
- Score: 8.345976310980795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological quantum computation based on Majorana objects is subject to a significant challenge because at least some of the two-qubit quantum gates rely on the fermion (either charge or spin) parity of the qubits. This dependency renders the quantum operations involving these gates probabilistic when attempting to advance quantum processes within the quantum circuit model. Such an approach leads to significant information loss whenever measurements yield the undesired fermion parity. To resolve the problem of wasting information, we devise topological operations that allow for the non-dissipative correction of information from undesired fermion parity to the desired one. We will use the sparse-dense mixed encoding process for the controlled-NOT gate as an example to explain how corrections can be implemented without affecting the quantum information carried by the computational qubits. This correction process can be applied {to} either the undesired input qubits or the fermion parity-dependent quantum gates, and it works for both Majorana-zero-mode-based and Majorana-edge-mode-based topological quantum computation.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Mitigating Quantum Errors via Truncated Neumann Series [10.04862322536857]
We propose a unified framework that can mitigate quantum gate and measurement errors in computing quantum expectation values.
The essential idea is to cancel the effect of quantum error by approximating its inverse via linearly combining quantum errors of different orders.
We test this framework for different quantum errors and find that the computation accuracy is substantially improved.
arXiv Detail & Related papers (2021-11-01T04:16:49Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Numerical hardware-efficient variational quantum simulation of a soliton
solution [0.0]
We discuss the capabilities of quantum algorithms with special attention paid to a hardware-efficient variational eigensolver.
A delicate interplay between magnetic interactions allows one to stabilize a chiral state that destroys the homogeneity of magnetic ordering.
We argue that, while being capable of correctly reproducing a uniform magnetic configuration, the hardware-efficient ansatz meets difficulties in providing a detailed description to a noncollinear magnetic structure.
arXiv Detail & Related papers (2021-05-13T11:58:18Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
Current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices.
Quantum tomography tries to reconstruct a quantum system's density matrix by a complete set of observables.
We propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables.
arXiv Detail & Related papers (2020-09-02T04:39:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.