Progressive Pretext Task Learning for Human Trajectory Prediction
- URL: http://arxiv.org/abs/2407.11588v1
- Date: Tue, 16 Jul 2024 10:48:18 GMT
- Title: Progressive Pretext Task Learning for Human Trajectory Prediction
- Authors: Xiaotong Lin, Tianming Liang, Jianhuang Lai, Jian-Fang Hu,
- Abstract summary: We introduce a novel Progressive Pretext Task learning (PPT) framework, which progressively enhances the model's capacity of capturing short-term dynamics and long-term dependencies.
We design a Transformer-based trajectory predictor, which is able to achieve highly efficient two-step reasoning.
- Score: 44.07301075351432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human trajectory prediction is a practical task of predicting the future positions of pedestrians on the road, which typically covers all temporal ranges from short-term to long-term within a trajectory. However, existing works attempt to address the entire trajectory prediction with a singular, uniform training paradigm, neglecting the distinction between short-term and long-term dynamics in human trajectories. To overcome this limitation, we introduce a novel Progressive Pretext Task learning (PPT) framework, which progressively enhances the model's capacity of capturing short-term dynamics and long-term dependencies for the final entire trajectory prediction. Specifically, we elaborately design three stages of training tasks in the PPT framework. In the first stage, the model learns to comprehend the short-term dynamics through a stepwise next-position prediction task. In the second stage, the model is further enhanced to understand long-term dependencies through a destination prediction task. In the final stage, the model aims to address the entire future trajectory task by taking full advantage of the knowledge from previous stages. To alleviate the knowledge forgetting, we further apply a cross-task knowledge distillation. Additionally, we design a Transformer-based trajectory predictor, which is able to achieve highly efficient two-step reasoning by integrating a destination-driven prediction strategy and a group of learnable prompt embeddings. Extensive experiments on popular benchmarks have demonstrated that our proposed approach achieves state-of-the-art performance with high efficiency. Code is available at https://github.com/iSEE-Laboratory/PPT.
Related papers
- Distilling Knowledge for Short-to-Long Term Trajectory Prediction [9.626916225081613]
Long-term trajectory forecasting is an important problem in the fields of computer vision, machine learning, and robotics.
We propose Di-Long, a new method that employs the distillation of a short-term trajectory model forecaster that guides a student network for long-term trajectory prediction.
Our experiments show that our proposed Di-Long method is effective for long-term forecasting and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-05-15T11:30:28Z) - Waypoint Models for Instruction-guided Navigation in Continuous
Environments [68.2912740006109]
We develop a class of language-conditioned waypoint prediction networks to examine this question.
We measure task performance and estimated execution time on a profiled LoCoBot robot.
Our models outperform prior work in VLN-CE and set a new state-of-the-art on the public leaderboard.
arXiv Detail & Related papers (2021-10-05T17:55:49Z) - Learning to Predict Vehicle Trajectories with Model-based Planning [43.27767693429292]
We introduce a novel framework called PRIME, which stands for Prediction with Model-based Planning.
Unlike recent prediction works that utilize neural networks to model scene context, PRIME is designed to generate accurate and feasibility-guaranteed future trajectory predictions.
Our PRIME outperforms state-of-the-art methods in prediction accuracy, feasibility, and robustness under imperfect tracking.
arXiv Detail & Related papers (2021-03-06T04:49:24Z) - From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [54.273455592965355]
Uncertainty in future trajectories stems from two sources: (a) sources known to the agent but unknown to the model, such as long term goals and (b)sources that are unknown to both the agent & the model, such as intent of other agents & irreducible randomness indecisions.
We model the epistemic un-certainty through multimodality in long term goals and the aleatoric uncertainty through multimodality in waypoints& paths.
To exemplify this dichotomy, we also propose a novel long term trajectory forecasting setting, with prediction horizons upto a minute, an order of magnitude longer than prior works.
arXiv Detail & Related papers (2020-12-02T21:01:29Z) - Goal-driven Long-Term Trajectory Prediction [30.054850639996033]
We propose to model a hypothetical process that determines pedestrians' goals and the impact of such process on long-term future trajectories.
We design Goal-driven Trajectory Prediction model - a dual-channel neural network that realizes such intuition.
The model is shown to outperform the state-of-the-art in various settings, especially in large prediction horizons.
arXiv Detail & Related papers (2020-11-05T10:47:33Z) - LTN: Long-Term Network for Long-Term Motion Prediction [0.0]
We present a two-stage framework for long-term trajectory prediction, which is named as Long-Term Network (LTN)
We first generate a set of proposed trajectories with our proposed distribution using a Conditional Variational Autoencoder (CVAE) and then classify them with binary labels, and output the trajectories with the highest score.
The results show that our method outperforms multiple state-of-the-art approaches in long-term trajectory prediction in terms of accuracy.
arXiv Detail & Related papers (2020-10-15T17:59:09Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
We develop a target-driven trajectory prediction framework for moving agents.
We benchmark it on trajectory prediction of vehicles and pedestrians.
We outperform state-of-the-art on Argoverse Forecasting, INTERACTION, Stanford Drone and an in-house Pedestrian-at-Intersection dataset.
arXiv Detail & Related papers (2020-08-19T06:52:46Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
The ability to predict and plan into the future is fundamental for agents acting in the world.
Current learning approaches for visual prediction and planning fail on long-horizon tasks.
We propose a framework for visual prediction and planning that is able to overcome both of these limitations.
arXiv Detail & Related papers (2020-06-23T17:58:56Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.