AdaptEval: Evaluating Large Language Models on Domain Adaptation for Text Summarization
- URL: http://arxiv.org/abs/2407.11591v3
- Date: Fri, 11 Oct 2024 09:23:43 GMT
- Title: AdaptEval: Evaluating Large Language Models on Domain Adaptation for Text Summarization
- Authors: Anum Afzal, Ribin Chalumattu, Florian Matthes, Laura Mascarell,
- Abstract summary: We evaluate the domain adaptation abilities of Large Language Models (LLM) on the summarization task across various domains.
We present AdaptEval, the first domain adaptation evaluation suite.
- Score: 4.07484910093752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the advances in the abstractive summarization task using Large Language Models (LLM), there is a lack of research that asses their abilities to easily adapt to different domains. We evaluate the domain adaptation abilities of a wide range of LLMs on the summarization task across various domains in both fine-tuning and in-context learning settings. We also present AdaptEval, the first domain adaptation evaluation suite. AdaptEval includes a domain benchmark and a set of metrics to facilitate the analysis of domain adaptation. Our results demonstrate that LLMs exhibit comparable performance in the in-context learning setting, regardless of their parameter scale.
Related papers
- R-Eval: A Unified Toolkit for Evaluating Domain Knowledge of Retrieval Augmented Large Language Models [51.468732121824125]
Large language models have achieved remarkable success on general NLP tasks, but they may fall short for domain-specific problems.
Existing evaluation tools only provide a few baselines and evaluate them on various domains without mining the depth of domain knowledge.
In this paper, we address the challenges of evaluating RALLMs by introducing the R-Eval toolkit, a Python toolkit designed to streamline the evaluation of different RAGs.
arXiv Detail & Related papers (2024-06-17T15:59:49Z) - Boosting Large Language Models with Continual Learning for Aspect-based Sentiment Analysis [33.86086075084374]
Aspect-based sentiment analysis (ABSA) is an important subtask of sentiment analysis.
We propose a Large Language Model-based Continual Learning (textttLLM-CL) model for ABSA.
arXiv Detail & Related papers (2024-05-09T02:00:07Z) - Unified Language-driven Zero-shot Domain Adaptation [55.64088594551629]
Unified Language-driven Zero-shot Domain Adaptation (ULDA) is a novel task setting.
It enables a single model to adapt to diverse target domains without explicit domain-ID knowledge.
arXiv Detail & Related papers (2024-04-10T16:44:11Z) - Adapt in Contexts: Retrieval-Augmented Domain Adaptation via In-Context
Learning [48.22913073217633]
Large language models (LLMs) have showcased their capability with few-shot inference known as in-context learning.
In this paper, we study the UDA problem under an in-context learning setting to adapt language models from the source domain to the target domain without any target labels.
We devise different prompting and training strategies, accounting for different LM architectures to learn the target distribution via language modeling.
arXiv Detail & Related papers (2023-11-20T06:06:20Z) - Divide and Adapt: Active Domain Adaptation via Customized Learning [56.79144758380419]
We present Divide-and-Adapt (DiaNA), a new ADA framework that partitions the target instances into four categories with stratified transferable properties.
With a novel data subdivision protocol based on uncertainty and domainness, DiaNA can accurately recognize the most gainful samples.
Thanks to the "divideand-adapt" spirit, DiaNA can handle data with large variations of domain gap.
arXiv Detail & Related papers (2023-07-21T14:37:17Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in sentiment analysis, aiming to provide fine-grained insights into human sentiments.
Existing benchmarks are limited to two domains and do not evaluate model performance on unseen domains.
We introduce a domain-expanded benchmark by annotating samples from diverse domains, enabling evaluation of models in both in-domain and out-of-domain settings.
arXiv Detail & Related papers (2023-05-23T18:01:49Z) - Internal Language Model Estimation based Adaptive Language Model Fusion
for Domain Adaptation [12.239557608053156]
We propose an adaptive LM fusion approach called internal language model estimation based adaptive domain adaptation (ILME-ADA)
We demonstrate the efficacy of the proposed ILME-ADA method with both RNN-T and LAS modeling frameworks employing neural network and n-gram LMs as ELMs respectively on two domain specific (target) test sets.
arXiv Detail & Related papers (2022-11-02T09:15:20Z) - VarMAE: Pre-training of Variational Masked Autoencoder for
Domain-adaptive Language Understanding [5.1282202633907]
We propose a novel Transformer-based language model named VarMAE for domain-adaptive language understanding.
Under the masked autoencoding objective, we design a context uncertainty learning module to encode the token's context into a smooth latent distribution.
Experiments on science- and finance-domain NLU tasks demonstrate that VarMAE can be efficiently adapted to new domains with limited resources.
arXiv Detail & Related papers (2022-11-01T12:51:51Z) - KALA: Knowledge-Augmented Language Model Adaptation [65.92457495576141]
We propose a novel domain adaption framework for pre-trained language models (PLMs)
Knowledge-Augmented Language model Adaptation (KALA) modulates the intermediate hidden representations of PLMs with domain knowledge.
Results show that, despite being computationally efficient, our KALA largely outperforms adaptive pre-training.
arXiv Detail & Related papers (2022-04-22T08:11:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.