Statistics-aware Audio-visual Deepfake Detector
- URL: http://arxiv.org/abs/2407.11650v2
- Date: Wed, 17 Jul 2024 11:41:59 GMT
- Title: Statistics-aware Audio-visual Deepfake Detector
- Authors: Marcella Astrid, Enjie Ghorbel, Djamila Aouada,
- Abstract summary: Methods in audio-visualfake detection mostly assess the synchronization between audio and visual features.
We propose a statistical feature loss to enhance the discrimination capability of the model.
Experiments on the DFDC and FakeAVCeleb datasets demonstrate the relevance of the proposed method.
- Score: 11.671275975119089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an enhanced audio-visual deep detection method. Recent methods in audio-visual deepfake detection mostly assess the synchronization between audio and visual features. Although they have shown promising results, they are based on the maximization/minimization of isolated feature distances without considering feature statistics. Moreover, they rely on cumbersome deep learning architectures and are heavily dependent on empirically fixed hyperparameters. Herein, to overcome these limitations, we propose: (1) a statistical feature loss to enhance the discrimination capability of the model, instead of relying solely on feature distances; (2) using the waveform for describing the audio as a replacement of frequency-based representations; (3) a post-processing normalization of the fakeness score; (4) the use of shallower network for reducing the computational complexity. Experiments on the DFDC and FakeAVCeleb datasets demonstrate the relevance of the proposed method.
Related papers
- Efficient Streaming Voice Steganalysis in Challenging Detection Scenarios [13.049308869863248]
This paper introduces a Dual-View VoIP Steganalysis Framework (DVSF)
The framework randomly obfuscates parts of the native steganographic descriptors in VoIP stream segments.
It then captures fine-grained local features related to steganography, building on the global features of VoIP.
arXiv Detail & Related papers (2024-11-20T02:22:58Z) - Detecting Audio-Visual Deepfakes with Fine-Grained Inconsistencies [11.671275975119089]
We propose the introduction of fine-grained mechanisms for detecting subtle artifacts in both spatial and temporal domains.
First, we introduce a local audio-visual model capable of capturing small spatial regions that are prone to inconsistencies with audio.
Second, we introduce a temporally-local pseudo-fake augmentation to include samples incorporating subtle temporal inconsistencies in our training set.
arXiv Detail & Related papers (2024-08-13T09:19:59Z) - Contextual Cross-Modal Attention for Audio-Visual Deepfake Detection and Localization [3.9440964696313485]
In the digital age, the emergence of deepfakes and synthetic media presents a significant threat to societal and political integrity.
Deepfakes based on multi-modal manipulation, such as audio-visual, are more realistic and pose a greater threat.
We propose a novel multi-modal attention framework based on recurrent neural networks (RNNs) that leverages contextual information for audio-visual deepfake detection.
arXiv Detail & Related papers (2024-08-02T18:45:01Z) - Targeted Augmented Data for Audio Deepfake Detection [11.671275975119089]
We propose a novel augmentation method for generating audio pseudo-fakes targeting the decision boundary of the model.
Inspired by adversarial attacks, we perturb original real data to synthesize pseudo-fakes with ambiguous prediction probabilities.
arXiv Detail & Related papers (2024-07-10T12:31:53Z) - Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models [52.04189118767758]
Generalization is a main issue for current audio deepfake detectors.
In this paper we study the potential of large-scale pre-trained models for audio deepfake detection.
arXiv Detail & Related papers (2024-05-03T15:27:11Z) - What to Remember: Self-Adaptive Continual Learning for Audio Deepfake
Detection [53.063161380423715]
Existing detection models have shown remarkable success in discriminating known deepfake audio, but struggle when encountering new attack types.
We propose a continual learning approach called Radian Weight Modification (RWM) for audio deepfake detection.
arXiv Detail & Related papers (2023-12-15T09:52:17Z) - Anomalous Sound Detection using Audio Representation with Machine ID
based Contrastive Learning Pretraining [52.191658157204856]
This paper uses contrastive learning to refine audio representations for each machine ID, rather than for each audio sample.
The proposed two-stage method uses contrastive learning to pretrain the audio representation model.
Experiments show that our method outperforms the state-of-the-art methods using contrastive learning or self-supervised classification.
arXiv Detail & Related papers (2023-04-07T11:08:31Z) - Deep Spectro-temporal Artifacts for Detecting Synthesized Speech [57.42110898920759]
This paper provides an overall assessment of track 1 (Low-quality Fake Audio Detection) and track 2 (Partially Fake Audio Detection)
In this paper, spectro-temporal artifacts were detected using raw temporal signals, spectral features, as well as deep embedding features.
We ranked 4th and 5th in track 1 and track 2, respectively.
arXiv Detail & Related papers (2022-10-11T08:31:30Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.