A Theoretical Formulation of Many-body Message Passing Neural Networks
- URL: http://arxiv.org/abs/2407.11756v1
- Date: Tue, 16 Jul 2024 14:18:48 GMT
- Title: A Theoretical Formulation of Many-body Message Passing Neural Networks
- Authors: Jiatong Han,
- Abstract summary: We present many-body Message Passing Neural Network (MPNN) framework that models higher-order node interactions.
We apply localized spectral filters on motif Laplacian, weighted by global edge Ricci curvatures.
We prove our formulation is invariant to neighbor node permutation, derive its sensitivity bound, and bound the range of learned graph potential.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present many-body Message Passing Neural Network (MPNN) framework that models higher-order node interactions ($\ge 2$ nodes). We model higher-order terms as tree-shaped motifs, comprising a central node with its neighborhood, and apply localized spectral filters on motif Laplacian, weighted by global edge Ricci curvatures. We prove our formulation is invariant to neighbor node permutation, derive its sensitivity bound, and bound the range of learned graph potential. We run regression on graph energies to demonstrate that it scales well with deeper and wider network topology, and run classification on synthetic graph datasets with heterophily and show its consistently high Dirichlet energy growth. We open-source our code at https://github.com/JThh/Many-Body-MPNN.
Related papers
- Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - Graph Neural Network Bandits [89.31889875864599]
We consider the bandit optimization problem with the reward function defined over graph-structured data.
Key challenges in this setting are scaling to large domains, and to graphs with many nodes.
We show that graph neural networks (GNNs) can be used to estimate the reward function.
arXiv Detail & Related papers (2022-07-13T18:12:36Z) - High-Order Pooling for Graph Neural Networks with Tensor Decomposition [23.244580796300166]
Graph Neural Networks (GNNs) are attracting growing attention due to their effectiveness and flexibility in modeling a variety of graph-structured data.
We propose the Graphized Neural Network (tGNN), a highly expressive GNN architecture relying on tensor decomposition to model high-order non-linear node interactions.
arXiv Detail & Related papers (2022-05-24T01:12:54Z) - Meta-Weight Graph Neural Network: Push the Limits Beyond Global
Homophily [24.408557217909316]
Graph Neural Networks (GNNs) show strong expressive power on graph data mining.
However, not all graphs are homophilic, even in the same graph, the distributions may vary significantly.
We propose Meta Weight Graph Neural Network (MWGNN) to adaptively construct graph convolution layers for different nodes.
arXiv Detail & Related papers (2022-03-19T09:27:38Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
A major issue with arbitrary graphs is the absence of canonical positional information of nodes.
We introduce Positional nodes (PE) of nodes, and inject it into the input layer, like in Transformers.
We observe a performance increase for molecular datasets, from 2.87% up to 64.14% when considering learnable PE for both GNN classes.
arXiv Detail & Related papers (2021-10-15T05:59:15Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
Prior to the introduction of Graph Neural Networks (GNNs), modeling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning.
This paper introduces a central node permutation variant function through a frustratingly simple and innocent-looking modification to the core operation of a GNN.
A tangible boost in performance of the model is observed where the model surpasses previous state-of-the-art results by a significant margin while employing fewer parameters.
arXiv Detail & Related papers (2021-09-20T05:04:26Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks.
We focus on transforming the input graph into a computation graph which contains both proximity and structural information.
We show that adaptively choosing between structure and proximity leads to improved performance under diverse mixing.
arXiv Detail & Related papers (2021-06-11T19:18:34Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.