Relational Representation Distillation
- URL: http://arxiv.org/abs/2407.12073v4
- Date: Fri, 20 Dec 2024 22:09:15 GMT
- Title: Relational Representation Distillation
- Authors: Nikolaos Giakoumoglou, Tania Stathaki,
- Abstract summary: Knowledge Distillation (KD) is an effective method for transferring knowledge from a large, well-trained teacher model to a smaller, more efficient student model.
Despite its success, one of main challenges in KD is ensuring the efficient transfer of complex knowledge while maintaining the student's computational efficiency.
We propose Representation Distillation (RRD), which improves knowledge transfer by maintaining sharpened structural relationships between metric feature representations.
- Score: 6.24302896438145
- License:
- Abstract: Knowledge Distillation (KD) is an effective method for transferring knowledge from a large, well-trained teacher model to a smaller, more efficient student model. Despite its success, one of the main challenges in KD is ensuring the efficient transfer of complex knowledge while maintaining the student's computational efficiency. While contrastive learning methods typically push different instances apart and pull similar ones together, applying such constraints to KD can be too restrictive. Contrastive methods focus on instance-level information, but lack attention to relationships between different instances. We propose Relational Representation Distillation (RRD), which improves knowledge transfer by maintaining structural relationships between feature representations rather than enforcing strict instance-level matching. Specifically, our method employs sharpened distributions of pairwise similarities among different instances as a relation metric, which is utilized to match the feature embeddings of student and teacher models. Our approach demonstrates superior performance on CIFAR-100 and ImageNet ILSVRC-2012, outperforming traditional KD and sometimes even outperforms the teacher network when combined with KD. It also transfers successfully to other datasets like Tiny ImageNet and STL-10. Code is available at https://github.com/giakoumoglou/distillers.
Related papers
- Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
We introduce Speculative Knowledge Distillation (SKD) to generate high-quality training data on-the-fly.
In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution.
We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following.
arXiv Detail & Related papers (2024-10-15T06:51:25Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
Knowledge distillation (KD) improves the performance of efficient and lightweight models.
Most existing KD techniques rely on Kullback-Leibler (KL) divergence.
We propose a Robustness-Reinforced Knowledge Distillation (R2KD) that leverages correlation distance and network pruning.
arXiv Detail & Related papers (2023-11-23T11:34:48Z) - Comparative Knowledge Distillation [102.35425896967791]
Traditional Knowledge Distillation (KD) assumes readily available access to teacher models for frequent inference.
We propose Comparative Knowledge Distillation (CKD), which encourages student models to understand the nuanced differences in a teacher model's interpretations of samples.
CKD consistently outperforms state of the art data augmentation and KD techniques.
arXiv Detail & Related papers (2023-11-03T21:55:33Z) - Structural Knowledge Distillation for Object Detection [2.690687471762886]
We propose a replacement for the pixel-wise independent lp-norm based on the structural similarity (SSIM)
Our method adds only little computational overhead, is straightforward to implement and at the same time it significantly outperforms the standard lp-norms.
arXiv Detail & Related papers (2022-11-23T17:06:52Z) - KDExplainer: A Task-oriented Attention Model for Explaining Knowledge
Distillation [59.061835562314066]
We introduce a novel task-oriented attention model, termed as KDExplainer, to shed light on the working mechanism underlying the vanilla KD.
We also introduce a portable tool, dubbed as virtual attention module (VAM), that can be seamlessly integrated with various deep neural networks (DNNs) to enhance their performance under KD.
arXiv Detail & Related papers (2021-05-10T08:15:26Z) - Knowledge Distillation Thrives on Data Augmentation [65.58705111863814]
Knowledge distillation (KD) is a general deep neural network training framework that uses a teacher model to guide a student model.
Many works have explored the rationale for its success, however, its interplay with data augmentation (DA) has not been well recognized so far.
In this paper, we are motivated by an interesting observation in classification: KD loss can benefit from extended training iterations while the cross-entropy loss does not.
We show this disparity arises because of data augmentation: KD loss can tap into the extra information from different input views brought by DA.
arXiv Detail & Related papers (2020-12-05T00:32:04Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
We propose MixKD, a data-agnostic distillation framework, to endow the resulting model with stronger generalization ability.
We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the error and the empirical error.
Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.
arXiv Detail & Related papers (2020-11-01T18:47:51Z) - Knowledge Distillation Beyond Model Compression [13.041607703862724]
Knowledge distillation (KD) is commonly deemed as an effective model compression technique in which a compact model (student) is trained under the supervision of a larger pretrained model or ensemble of models (teacher)
In this study, we provide an extensive study on nine different KD methods which covers a broad spectrum of approaches to capture and transfer knowledge.
arXiv Detail & Related papers (2020-07-03T19:54:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
We propose a novel KD method that works by modeling the information flow through the various layers of the teacher model.
The proposed method is capable of overcoming the aforementioned limitations by using an appropriate supervision scheme during the different phases of the training process.
arXiv Detail & Related papers (2020-05-02T06:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.