Identifying Speakers in Dialogue Transcripts: A Text-based Approach Using Pretrained Language Models
- URL: http://arxiv.org/abs/2407.12094v1
- Date: Tue, 16 Jul 2024 18:03:58 GMT
- Title: Identifying Speakers in Dialogue Transcripts: A Text-based Approach Using Pretrained Language Models
- Authors: Minh Nguyen, Franck Dernoncourt, Seunghyun Yoon, Hanieh Deilamsalehy, Hao Tan, Ryan Rossi, Quan Hung Tran, Trung Bui, Thien Huu Nguyen,
- Abstract summary: We introduce an approach to identifying speaker names in dialogue transcripts, a crucial task for enhancing content accessibility and searchability in digital media archives.
We present a novel, large-scale dataset derived from the MediaSum corpus, encompassing transcripts from a wide range of media sources.
We propose novel transformer-based models tailored for SpeakerID, leveraging contextual cues within dialogues to accurately attribute speaker names.
- Score: 83.7506131809624
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce an approach to identifying speaker names in dialogue transcripts, a crucial task for enhancing content accessibility and searchability in digital media archives. Despite the advancements in speech recognition, the task of text-based speaker identification (SpeakerID) has received limited attention, lacking large-scale, diverse datasets for effective model training. Addressing these gaps, we present a novel, large-scale dataset derived from the MediaSum corpus, encompassing transcripts from a wide range of media sources. We propose novel transformer-based models tailored for SpeakerID, leveraging contextual cues within dialogues to accurately attribute speaker names. Through extensive experiments, our best model achieves a great precision of 80.3\%, setting a new benchmark for SpeakerID. The data and code are publicly available here: \url{https://github.com/adobe-research/speaker-identification}
Related papers
- Character-aware audio-visual subtitling in context [58.95580154761008]
This paper presents an improved framework for character-aware audio-visual subtitling in TV shows.
Our approach integrates speech recognition, speaker diarisation, and character recognition, utilising both audio and visual cues.
We validate the method on a dataset with 12 TV shows, demonstrating superior performance in speaker diarisation and character recognition accuracy compared to existing approaches.
arXiv Detail & Related papers (2024-10-14T20:27:34Z) - Investigating the Effects of Large-Scale Pseudo-Stereo Data and Different Speech Foundation Model on Dialogue Generative Spoken Language Model [47.67067056593085]
We develop a pipeline capable of transforming single-channel dialogue data into pseudo-stereo data.
This expanded our training dataset from a mere 2,000 to an impressive 17,600 hours.
The inclusion of this pseudo-stereo data has proven to be effective in improving the performance of spoken dialogue language models.
arXiv Detail & Related papers (2024-07-02T03:22:41Z) - SPECTRUM: Speaker-Enhanced Pre-Training for Long Dialogue Summarization [48.284512017469524]
Multi-turn dialogues are characterized by their extended length and the presence of turn-taking conversations.
Traditional language models often overlook the distinct features of these dialogues by treating them as regular text.
We propose a speaker-enhanced pre-training method for long dialogue summarization.
arXiv Detail & Related papers (2024-01-31T04:50:00Z) - Personalizing Keyword Spotting with Speaker Information [11.4457776449367]
Keywords spotting systems often struggle to generalize to a diverse population with various accents and age groups.
We propose a novel approach that integrates speaker information into keyword spotting using Feature-wise Linear Modulation (FiLM)
Our proposed approach only requires a small 1% increase in the number of parameters, with a minimum impact on latency and computational cost.
arXiv Detail & Related papers (2023-11-06T12:16:06Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
We propose "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space.
The proposed CTAP model is trained on 210k speech and phoneme pairs, achieving minimally-supervised TTS, VC, and ASR.
arXiv Detail & Related papers (2023-09-01T12:35:43Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZ is a large-scale speech-text dataset for spoken TOD.
Cross-turn slot and reasoning slot detection are new challenges for SpokenWOZ.
arXiv Detail & Related papers (2023-05-22T13:47:51Z) - Improved Relation Networks for End-to-End Speaker Verification and
Identification [0.0]
Speaker identification systems are tasked to identify a speaker amongst a set of enrolled speakers given just a few samples.
We propose improved relation networks for speaker verification and few-shot (unseen) speaker identification.
Inspired by the use of prototypical networks in speaker verification, we train the model to classify samples in the current episode amongst all speakers present in the training set.
arXiv Detail & Related papers (2022-03-31T17:44:04Z) - Improving speaker de-identification with functional data analysis of f0
trajectories [10.809893662563926]
Formant modification is a simpler, yet effective method for speaker de-identification which requires no training data.
This study introduces a novel speaker de-identification method, which, in addition to simple formant shifts, manipulates f0 trajectories based on functional data analysis.
The proposed speaker de-identification method will conceal plausibly identifying pitch characteristics in a phonetically controllable manner and improve formant-based speaker de-identification up to 25%.
arXiv Detail & Related papers (2022-03-31T01:34:15Z) - Joint Speaker Counting, Speech Recognition, and Speaker Identification
for Overlapped Speech of Any Number of Speakers [38.3469744871394]
We propose an end-to-end speaker-attributed automatic speech recognition model.
It unifies speaker counting, speech recognition, and speaker identification on overlapped speech.
arXiv Detail & Related papers (2020-06-19T02:05:18Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
We propose a semi-supervised learning approach for multi-speaker text-to-speech (TTS)
A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation.
We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy.
arXiv Detail & Related papers (2020-05-16T15:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.