FoodMem: Near Real-time and Precise Food Video Segmentation
- URL: http://arxiv.org/abs/2407.12121v1
- Date: Tue, 16 Jul 2024 19:15:07 GMT
- Title: FoodMem: Near Real-time and Precise Food Video Segmentation
- Authors: Ahmad AlMughrabi, Adrián Galán, Ricardo Marques, Petia Radeva,
- Abstract summary: Current limitations lead to inaccurate nutritional analysis, inefficient crop management, and suboptimal food processing.
This study introduces the development of a robust framework for high-quality, near-real-time segmentation and tracking of food items in videos.
We present FoodMem, a novel framework designed to segment food items from video sequences of 360-degree scenes.
- Score: 4.282795945742752
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Food segmentation, including in videos, is vital for addressing real-world health, agriculture, and food biotechnology issues. Current limitations lead to inaccurate nutritional analysis, inefficient crop management, and suboptimal food processing, impacting food security and public health. Improving segmentation techniques can enhance dietary assessments, agricultural productivity, and the food production process. This study introduces the development of a robust framework for high-quality, near-real-time segmentation and tracking of food items in videos, using minimal hardware resources. We present FoodMem, a novel framework designed to segment food items from video sequences of 360-degree unbounded scenes. FoodMem can consistently generate masks of food portions in a video sequence, overcoming the limitations of existing semantic segmentation models, such as flickering and prohibitive inference speeds in video processing contexts. To address these issues, FoodMem leverages a two-phase solution: a transformer segmentation phase to create initial segmentation masks and a memory-based tracking phase to monitor food masks in complex scenes. Our framework outperforms current state-of-the-art food segmentation models, yielding superior performance across various conditions, such as camera angles, lighting, reflections, scene complexity, and food diversity. This results in reduced segmentation noise, elimination of artifacts, and completion of missing segments. Here, we also introduce a new annotated food dataset encompassing challenging scenarios absent in previous benchmarks. Extensive experiments conducted on Nutrition5k and Vegetables & Fruits datasets demonstrate that FoodMem enhances the state-of-the-art by 2.5% mean average precision in food video segmentation and is 58 x faster on average.
Related papers
- MetaFood3D: Large 3D Food Object Dataset with Nutrition Values [53.24500333363066]
This dataset consists of 637 meticulously labeled 3D food objects across 108 categories, featuring detailed nutrition information, weight, and food codes linked to a comprehensive nutrition database.
Experimental results demonstrate our dataset's significant potential for improving algorithm performance, highlight the challenging gap between video captures and 3D scanned data, and show the strength of the MetaFood3D dataset in high-quality data generation, simulation, and augmentation.
arXiv Detail & Related papers (2024-09-03T15:02:52Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
Current image-based food portion estimation algorithms assume that users take images of their meals one or two times.
We introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils.
The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews.
arXiv Detail & Related papers (2024-05-12T00:16:02Z) - OVFoodSeg: Elevating Open-Vocabulary Food Image Segmentation via Image-Informed Textual Representation [43.65207396061584]
OVFoodSeg is a framework that enhances text embeddings with visual context.
The training process of OVFoodSeg is divided into two stages: the pre-training of FoodLearner and the subsequent learning phase for segmentation.
By addressing the deficiencies of previous models, OVFoodSeg demonstrates a significant improvement, achieving a 4.9% increase in mean Intersection over Union (mIoU) on the FoodSeg103 dataset.
arXiv Detail & Related papers (2024-04-01T18:26:29Z) - From Canteen Food to Daily Meals: Generalizing Food Recognition to More
Practical Scenarios [92.58097090916166]
We present two new benchmarks, namely DailyFood-172 and DailyFood-16, designed to curate food images from everyday meals.
These two datasets are used to evaluate the transferability of approaches from the well-curated food image domain to the everyday-life food image domain.
arXiv Detail & Related papers (2024-03-12T08:32:23Z) - FoodSAM: Any Food Segmentation [10.467966270491228]
We propose a novel framework, called FoodSAM, to address the lack of class-specific information in SAM-generated masks.
FoodSAM integrates the coarse semantic mask with SAM-generated masks to enhance semantic segmentation quality.
FoodSAM stands as the first-ever work to achieve instance, panoptic, and promptable segmentation on food images.
arXiv Detail & Related papers (2023-08-11T04:42:10Z) - Transferring Knowledge for Food Image Segmentation using Transformers
and Convolutions [65.50975507723827]
Food image segmentation is an important task that has ubiquitous applications, such as estimating the nutritional value of a plate of food.
One challenge is that food items can overlap and mix, making them difficult to distinguish.
Two models are trained and compared, one based on convolutional neural networks and the other on Bidirectional representation for Image Transformers (BEiT)
The BEiT model outperforms the previous state-of-the-art model by achieving a mean intersection over union of 49.4 on FoodSeg103.
arXiv Detail & Related papers (2023-06-15T15:38:10Z) - A Large-Scale Benchmark for Food Image Segmentation [62.28029856051079]
We build a new food image dataset FoodSeg103 (and its extension FoodSeg154) containing 9,490 images.
We annotate these images with 154 ingredient classes and each image has an average of 6 ingredient labels and pixel-wise masks.
We propose a multi-modality pre-training approach called ReLeM that explicitly equips a segmentation model with rich and semantic food knowledge.
arXiv Detail & Related papers (2021-05-12T03:00:07Z) - An End-to-End Food Image Analysis System [8.622335099019214]
We propose an image-based food analysis framework that integrates food localization, classification and portion size estimation.
Our proposed framework is end-to-end, i.e., the input can be an arbitrary food image containing multiple food items.
Our framework is evaluated on a real life food image dataset collected from a nutrition feeding study.
arXiv Detail & Related papers (2021-02-01T05:36:20Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
We learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another.
We propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities.
We show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.
arXiv Detail & Related papers (2020-03-09T07:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.