Distribution Alignment for Fully Test-Time Adaptation with Dynamic Online Data Streams
- URL: http://arxiv.org/abs/2407.12128v1
- Date: Tue, 16 Jul 2024 19:33:23 GMT
- Title: Distribution Alignment for Fully Test-Time Adaptation with Dynamic Online Data Streams
- Authors: Ziqiang Wang, Zhixiang Chi, Yanan Wu, Li Gu, Zhi Liu, Konstantinos Plataniotis, Yang Wang,
- Abstract summary: Test-Time Adaptation (TTA) enables adaptation and inference in test data streams with domain shifts from the source.
We propose a novel Distribution Alignment loss for TTA.
We surpass existing methods in non-i.i.d. scenarios and maintain competitive performance under the ideal i.i.d. assumption.
- Score: 19.921480334048756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a model trained on source data, Test-Time Adaptation (TTA) enables adaptation and inference in test data streams with domain shifts from the source. Current methods predominantly optimize the model for each incoming test data batch using self-training loss. While these methods yield commendable results in ideal test data streams, where batches are independently and identically sampled from the target distribution, they falter under more practical test data streams that are not independent and identically distributed (non-i.i.d.). The data batches in a non-i.i.d. stream display prominent label shifts relative to each other. It leads to conflicting optimization objectives among batches during the TTA process. Given the inherent risks of adapting the source model to unpredictable test-time distributions, we reverse the adaptation process and propose a novel Distribution Alignment loss for TTA. This loss guides the distributions of test-time features back towards the source distributions, which ensures compatibility with the well-trained source model and eliminates the pitfalls associated with conflicting optimization objectives. Moreover, we devise a domain shift detection mechanism to extend the success of our proposed TTA method in the continual domain shift scenarios. Our extensive experiments validate the logic and efficacy of our method. On six benchmark datasets, we surpass existing methods in non-i.i.d. scenarios and maintain competitive performance under the ideal i.i.d. assumption.
Related papers
- pSTarC: Pseudo Source Guided Target Clustering for Fully Test-Time
Adaptation [15.621092104244003]
Test Time Adaptation (TTA) is a pivotal concept in machine learning, enabling models to perform well in real-world scenarios.
We propose a novel approach called pseudo Source guided Target Clustering (pSTarC) addressing the relatively unexplored area of TTA under real-world domain shifts.
arXiv Detail & Related papers (2023-09-02T07:13:47Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
We propose DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data.
Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13%.
arXiv Detail & Related papers (2023-08-11T09:36:31Z) - Robust Test-Time Adaptation in Dynamic Scenarios [9.475271284789969]
Test-time adaptation (TTA) intends to adapt the pretrained model to test distributions with only unlabeled test data streams.
We elaborate a Robust Test-Time Adaptation (RoTTA) method against the complex data stream in PTTA.
Our method is easy to implement, making it a good choice for rapid deployment.
arXiv Detail & Related papers (2023-03-24T10:19:14Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - Back to the Source: Diffusion-Driven Test-Time Adaptation [77.4229736436935]
Test-time adaptation harnesses test inputs to improve accuracy of a model trained on source data when tested on shifted target data.
We instead update the target data, by projecting all test inputs toward the source domain with a generative diffusion model.
arXiv Detail & Related papers (2022-07-07T17:14:10Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptation aims to adapt the model trained on source domains to yield better predictions for test samples.
Single-Utterance Test-time Adaptation (SUTA) is the first TTA study in speech area to our best knowledge.
arXiv Detail & Related papers (2022-03-27T06:38:39Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.