Trustworthy AI in practice: an analysis of practitioners' needs and challenges
- URL: http://arxiv.org/abs/2407.12135v1
- Date: Wed, 15 May 2024 13:02:46 GMT
- Title: Trustworthy AI in practice: an analysis of practitioners' needs and challenges
- Authors: Maria Teresa Baldassarre, Domenico Gigante, Marcos Kalinowski, Azzurra Ragone, Sara Tibidò,
- Abstract summary: A plethora of frameworks and guidelines have appeared to support practitioners in implementing Trustworthy AI applications.
We study the vision AI practitioners have on TAI principles, how they address them, and what they would like to have.
We highlight recommendations to help AI practitioners develop Trustworthy AI applications.
- Score: 2.5788518098820337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been growing attention on behalf of both academic and practice communities towards the ability of Artificial Intelligence (AI) systems to operate responsibly and ethically. As a result, a plethora of frameworks and guidelines have appeared to support practitioners in implementing Trustworthy AI applications (TAI). However, little research has been done to investigate whether such frameworks are being used and how. In this work, we study the vision AI practitioners have on TAI principles, how they address them, and what they would like to have - in terms of tools, knowledge, or guidelines - when they attempt to incorporate such principles into the systems they develop. Through a survey and semi-structured interviews, we systematically investigated practitioners' challenges and needs in developing TAI systems. Based on these practical findings, we highlight recommendations to help AI practitioners develop Trustworthy AI applications.
Related papers
- Towards an Operational Responsible AI Framework for Learning Analytics in Higher Education [0.2796197251957245]
We map 11 established Responsible AI frameworks, including those by leading tech companies, to the context of LA in Higher Education.
This led to the identification of seven key principles such as transparency, fairness, and accountability.
We present a novel framework that offers practical guidance to HE institutions and is designed to evolve with community input.
arXiv Detail & Related papers (2024-10-08T08:55:24Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
There is a significant gap between high-level AI ethics principles and low-level concrete practices for AI professionals.
We develop a novel holistic framework for Trustworthy AI - designed to bridge the gap between theory and practice.
Our goal is to empower AI professionals to confidently navigate the ethical dimensions of Trustworthy AI.
arXiv Detail & Related papers (2024-02-08T01:05:16Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development.
This paper aims to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development.
Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks.
arXiv Detail & Related papers (2023-12-15T06:40:27Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - Towards Implementing Responsible AI [22.514717870367623]
We propose four aspects of AI system design and development, adapting processes used in software engineering.
The salient findings cover four aspects of AI system design and development, adapting processes used in software engineering.
arXiv Detail & Related papers (2022-05-09T14:59:23Z) - Software Engineering for Responsible AI: An Empirical Study and
Operationalised Patterns [20.747681252352464]
We propose a template that enables AI ethics principles to be operationalised in the form of concrete patterns.
These patterns provide concrete, operationalised guidance that facilitate the development of responsible AI systems.
arXiv Detail & Related papers (2021-11-18T02:18:27Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z) - On the Morality of Artificial Intelligence [154.69452301122175]
We propose conceptual and practical principles and guidelines for Machine Learning research and deployment.
We insist on concrete actions that can be taken by practitioners to pursue a more ethical and moral practice of ML aimed at using AI for social good.
arXiv Detail & Related papers (2019-12-26T23:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.