A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics
- URL: http://arxiv.org/abs/2407.12168v1
- Date: Tue, 16 Jul 2024 20:44:09 GMT
- Title: A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics
- Authors: Junqi Yin, Siming Liang, Siyan Liu, Feng Bao, Hristo G. Chipilski, Dan Lu, Guannan Zhang,
- Abstract summary: We introduce a generic real-time data assimilation framework and demonstrate its end-to-end performance on the Frontier supercomputer.
This framework comprises two primary modules: an ensemble score filter (EnSF) and a vision transformer-based surrogate.
We demonstrate both the strong and weak scaling of our framework up to 1024 GPUs on the Exascale supercomputer, Frontier.
- Score: 8.012940782999975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The weather and climate domains are undergoing a significant transformation thanks to advances in AI-based foundation models such as FourCastNet, GraphCast, ClimaX and Pangu-Weather. While these models show considerable potential, they are not ready yet for operational use in weather forecasting or climate prediction. This is due to the lack of a data assimilation method as part of their workflow to enable the assimilation of incoming Earth system observations in real time. This limitation affects their effectiveness in predicting complex atmospheric phenomena such as tropical cyclones and atmospheric rivers. To overcome these obstacles, we introduce a generic real-time data assimilation framework and demonstrate its end-to-end performance on the Frontier supercomputer. This framework comprises two primary modules: an ensemble score filter (EnSF), which significantly outperforms the state-of-the-art data assimilation method, namely, the Local Ensemble Transform Kalman Filter (LETKF); and a vision transformer-based surrogate capable of real-time adaptation through the integration of observational data. The ViT surrogate can represent either physics-based models or AI-based foundation models. We demonstrate both the strong and weak scaling of our framework up to 1024 GPUs on the Exascale supercomputer, Frontier. Our results not only illustrate the framework's exceptional scalability on high-performance computing systems, but also demonstrate the importance of supercomputers in real-time data assimilation for weather and climate predictions. Even though the proposed framework is tested only on a benchmark surface quasi-geostrophic (SQG) turbulence system, it has the potential to be combined with existing AI-based foundation models, making it suitable for future operational implementations.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
We evaluate the efficiency of three surrogate models in speeding up experimental research by simulating land surface processes.
Our findings indicate that while all models on average demonstrate high accuracy over the forecast period, the LSTM network excels in continental long-range predictions when carefully tuned.
arXiv Detail & Related papers (2024-07-23T13:26:05Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models [3.332582598089642]
The field of meteorological forecasting has undergone a significant transformation with the integration of large models.
Models like FourCastNet, Pangu-Weather, GraphCast, ClimaX, and FengWu have made notable contributions by providing accurate, high-resolution forecasts.
arXiv Detail & Related papers (2024-04-10T00:52:54Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
We introduce FaIRGP, a data-driven emulator that satisfies the physical temperature response equations of an energy balance model.
We show how FaIRGP can be used to obtain estimates of top-of-atmosphere radiative forcing.
We hope that this work will contribute to widening the adoption of data-driven methods in climate emulation.
arXiv Detail & Related papers (2023-07-14T08:43:36Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.