Are Linear Regression Models White Box and Interpretable?
- URL: http://arxiv.org/abs/2407.12177v1
- Date: Tue, 16 Jul 2024 21:05:51 GMT
- Title: Are Linear Regression Models White Box and Interpretable?
- Authors: Ahmed M Salih, Yuhe Wang,
- Abstract summary: Explainable artificial intelligence (XAI) is a set of tools and algorithms that applied or embedded to machine learning models to understand and interpret the models.
Simple models including linear regression are easy to implement, has less computational complexity and easy to visualize the output.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable artificial intelligence (XAI) is a set of tools and algorithms that applied or embedded to machine learning models to understand and interpret the models. They are recommended especially for complex or advanced models including deep neural network because they are not interpretable from human point of view. On the other hand, simple models including linear regression are easy to implement, has less computational complexity and easy to visualize the output. The common notion in the literature that simple models including linear regression are considered as "white box" because they are more interpretable and easier to understand. This is based on the idea that linear regression models have several favorable outcomes including the effect of the features in the model and whether they affect positively or negatively toward model output. Moreover, uncertainty of the model can be measured or estimated using the confidence interval. However, we argue that this perception is not accurate and linear regression models are not easy to interpret neither easy to understand considering common XAI metrics and possible challenges might face. This includes linearity, local explanation, multicollinearity, covariates, normalization, uncertainty, features contribution and fairness. Consequently, we recommend the so-called simple models should be treated equally to complex models when it comes to explainability and interpretability.
Related papers
- Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text.
This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model.
We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle.
arXiv Detail & Related papers (2023-10-23T04:35:58Z) - Analysis of Interpolating Regression Models and the Double Descent
Phenomenon [3.883460584034765]
It is commonly assumed that models which interpolate noisy training data are poor to generalize.
The best models obtained are overparametrized and the testing error exhibits the double descent behavior as the model order increases.
We derive a result based on the behavior of the smallest singular value of the regression matrix that explains the peak location and the double descent shape of the testing error as a function of model order.
arXiv Detail & Related papers (2023-04-17T09:44:33Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Constructing Effective Machine Learning Models for the Sciences: A
Multidisciplinary Perspective [77.53142165205281]
We show how flexible non-linear solutions will not always improve upon manually adding transforms and interactions between variables to linear regression models.
We discuss how to recognize this before constructing a data-driven model and how such analysis can help us move to intrinsically interpretable regression models.
arXiv Detail & Related papers (2022-11-21T17:48:44Z) - LocalGLMnet: interpretable deep learning for tabular data [0.0]
We propose a new network architecture that shares similar features as generalized linear models.
Our approach provides an additive decomposition in the spirit of Shapley values and integrated gradients.
arXiv Detail & Related papers (2021-07-23T07:38:33Z) - Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern
Classification [0.0]
We propose an LTCN-based model for interpretable pattern classification of structured data.
Our method brings its own mechanism for providing explanations by quantifying the relevance of each feature in the decision process.
Our interpretable model obtains competitive performance when compared to the state-of-the-art white and black boxes.
arXiv Detail & Related papers (2021-07-07T18:14:50Z) - Evading the Simplicity Bias: Training a Diverse Set of Models Discovers
Solutions with Superior OOD Generalization [93.8373619657239]
Neural networks trained with SGD were recently shown to rely preferentially on linearly-predictive features.
This simplicity bias can explain their lack of robustness out of distribution (OOD)
We demonstrate that the simplicity bias can be mitigated and OOD generalization improved.
arXiv Detail & Related papers (2021-05-12T12:12:24Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
We provide the first model for non-negative functions from the same good linear models.
We prove that it admits a representer theorem and provide an efficient dual formulation for convex problems.
arXiv Detail & Related papers (2020-07-08T07:17:28Z) - Learning a Formula of Interpretability to Learn Interpretable Formulas [1.7616042687330642]
We show that an ML model of non-objective Proxies of Human Interpretability can be learned from human feedback.
We show this for evolutionary symbolic regression.
Our approach represents an important stepping stone for the design of next-generation interpretable (evolutionary) ML algorithms.
arXiv Detail & Related papers (2020-04-23T13:59:49Z) - Lifting Interpretability-Performance Trade-off via Automated Feature
Engineering [5.802346990263708]
Complex black-box predictive models may have high performance, but lack of interpretability causes problems.
We propose a method that uses elastic black-boxes as surrogate models to create a simpler, less opaque, yet still accurate and interpretable glass-box models.
arXiv Detail & Related papers (2020-02-11T09:16:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.