Spectra: Surprising Effectiveness of Pretraining Ternary Language Models at Scale
- URL: http://arxiv.org/abs/2407.12327v5
- Date: Fri, 11 Oct 2024 04:44:55 GMT
- Title: Spectra: Surprising Effectiveness of Pretraining Ternary Language Models at Scale
- Authors: Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, Irina Rish,
- Abstract summary: This paper investigates the pretraining of low-bitwidth models specifically Ternary Language Models (TriLMs) as an alternative to traditional floating-point models (FloatLMs) and their post-training quantized versions (QuantLMs)
We present Spectra LLM suite, the first open suite of LLMs spanning multiple bit-widths, including FloatLMs, QuantLMs, and TriLMs, ranging from 99M to 3.9B parameters trained on 300B tokens.
- Score: 16.865532646589987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rapid advancements in GPU computational power has outpaced memory capacity and bandwidth growth, creating bottlenecks in Large Language Model (LLM) inference. Post-training quantization is the leading method for addressing memory-related bottlenecks in LLM inference, but it suffers from significant performance degradation below 4-bit precision. This paper addresses these challenges by investigating the pretraining of low-bitwidth models specifically Ternary Language Models (TriLMs) as an alternative to traditional floating-point models (FloatLMs) and their post-training quantized versions (QuantLMs). We present Spectra LLM suite, the first open suite of LLMs spanning multiple bit-widths, including FloatLMs, QuantLMs, and TriLMs, ranging from 99M to 3.9B parameters trained on 300B tokens. Our comprehensive evaluation demonstrates that TriLMs offer superior scaling behavior in terms of model size (in bits). Surprisingly, at scales exceeding one billion parameters, TriLMs consistently outperform their QuantLM and FloatLM counterparts for a given bit size across various benchmarks. Notably, the 3.9B parameter TriLM matches the performance of the FloatLM 3.9B across all benchmarks, despite having fewer bits than FloatLM 830M. Overall, this research provides valuable insights into the feasibility and scalability of low-bitwidth language models, paving the way for the development of more efficient LLMs. To enhance understanding of low-bitwidth models, we are releasing 500+ intermediate checkpoints of the Spectra suite at https://github.com/NolanoOrg/SpectraSuite.
Related papers
- Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
Fine-tuning large language models (LLMs) to diverse applications is crucial to meet complex demands.
Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs.
In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for task-specific fine-tuned LLMs.
arXiv Detail & Related papers (2024-06-13T07:57:27Z) - Scalable MatMul-free Language Modeling [8.672867887354977]
We show that MatMul operations can be completely eliminated from large language models.
Our proposed MatMul-free models achieve performance on-par with state-of-the-art Transformers.
arXiv Detail & Related papers (2024-06-04T17:50:34Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - An empirical study of LLaMA3 quantization: from LLMs to MLLMs [54.91212829143966]
The LLaMA family is one of the most powerful open-source large language models (LLMs)
LLaMA3 models have achieved impressive performance in various domains with super-large scale pre-training on over 15T tokens of data.
We evaluate the 10 existing post-training quantization and LoRA fine-tuning (LoRA-FT) methods of LLaMA3 on 1-8 bits and various datasets to reveal the low-bit quantization performance of LLaMA3.
arXiv Detail & Related papers (2024-04-22T10:03:03Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLM is a groundbreaking 1-bit post-training quantization scheme tailored for pretrained large language models.
It achieves for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families.
arXiv Detail & Related papers (2024-02-06T09:26:34Z) - Scaling Sparse Fine-Tuning to Large Language Models [67.59697720719672]
Large Language Models (LLMs) are difficult to fully fine-tune due to their sheer number of parameters.
We propose SpIEL, a novel sparse finetuning method which maintains an array of parameter indices and the deltas of these parameters relative to their pretrained values.
We show that SpIEL is superior to popular parameter-efficient fine-tuning methods like LoRA in terms of performance and comparable in terms of run time.
arXiv Detail & Related papers (2024-01-29T18:43:49Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.