Improving the classification of extreme classes by means of loss regularisation and generalised beta distributions
- URL: http://arxiv.org/abs/2407.12417v1
- Date: Wed, 17 Jul 2024 08:57:42 GMT
- Title: Improving the classification of extreme classes by means of loss regularisation and generalised beta distributions
- Authors: Víctor Manuel Vargas, Pedro Antonio Gutiérrez, Javier Barbero-Gómez, César Hervás-Martínez,
- Abstract summary: We propose a unimodal regularisation approach to improve the classification performance of the first and last classes.
Performance in the extreme classes is compared using a new metric that takes into account their sensitivities.
The results for the proposed metric show that the generalised beta distribution generally improves classification performance in the extreme classes.
- Score: 8.640930010669042
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: An ordinal classification problem is one in which the target variable takes values on an ordinal scale. Nowadays, there are many of these problems associated with real-world tasks where it is crucial to accurately classify the extreme classes of the ordinal structure. In this work, we propose a unimodal regularisation approach that can be applied to any loss function to improve the classification performance of the first and last classes while maintaining good performance for the remainder. The proposed methodology is tested on six datasets with different numbers of classes, and compared with other unimodal regularisation methods in the literature. In addition, performance in the extreme classes is compared using a new metric that takes into account their sensitivities. Experimental results and statistical analysis show that the proposed methodology obtains a superior average performance considering different metrics. The results for the proposed metric show that the generalised beta distribution generally improves classification performance in the extreme classes. At the same time, the other five nominal and ordinal metrics considered show that the overall performance is aligned with the performance of previous alternatives.
Related papers
- Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
achieving optimal average accuracy comes at the cost of significantly hurting individual class accuracy by as much as 20% on ImageNet.
We present a framework for understanding how DA interacts with class-level learning dynamics.
We show that simple class-conditional augmentation strategies improve performance on the negatively affected classes.
arXiv Detail & Related papers (2023-12-07T18:37:43Z) - Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
We show that matching class priors correlates strongly with the oracle upper bound performance.
We also demonstrate large consistent performance gains for prompt settings over a range of NLP tasks.
arXiv Detail & Related papers (2023-09-10T10:57:41Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Learning Acceptance Regions for Many Classes with Anomaly Detection [19.269724165953274]
Many existing set-valued classification methods do not consider the possibility that a new class that never appeared in the training data appears in the test data.
We propose a Generalized Prediction Set (GPS) approach to estimate the acceptance regions while considering the possibility of a new class in the test data.
Unlike previous methods, the proposed method achieves a good balance between accuracy, efficiency, and anomaly detection rate.
arXiv Detail & Related papers (2022-09-20T19:40:33Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
We introduce Classification with Alternating Normalization (CAN), a non-parametric post-processing step for classification.
CAN improves classification accuracy for challenging examples by re-adjusting their predicted class probability distribution.
We empirically demonstrate its effectiveness across a diverse set of classification tasks.
arXiv Detail & Related papers (2021-09-28T02:55:42Z) - Statistical Theory for Imbalanced Binary Classification [8.93993657323783]
We show that optimal classification performance depends on certain properties of class imbalance that have not previously been formalized.
Specifically, we propose a novel sub-type of class imbalance, which we call Uniform Class Imbalance.
These results provide some of the first meaningful finite-sample statistical theory for imbalanced binary classification.
arXiv Detail & Related papers (2021-07-05T03:55:43Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification [11.125446871030734]
Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes.
We propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances.
arXiv Detail & Related papers (2020-10-12T19:47:09Z) - Appropriateness of Performance Indices for Imbalanced Data
Classification: An Analysis [15.85259386116784]
We identify two fundamental conditions that a performance index must satisfy to be respectively resilient to altering number of testing instances from each class and the number of classes in the test set.
We investigate the capability of the indices to retain information about the classification performance over all the classes, even when the classifier exhibits extreme performance on some classes.
arXiv Detail & Related papers (2020-08-26T18:23:36Z) - Classification Performance Metric for Imbalance Data Based on Recall and
Selectivity Normalized in Class Labels [0.0]
We introduce a new performance measure based on the harmonic mean of Recall and Selectivity normalized in class labels.
This paper shows that the proposed performance measure has the right properties for the imbalanced dataset.
arXiv Detail & Related papers (2020-06-23T20:38:48Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
In most real-world scenarios, labeled training datasets are highly class-imbalanced, where deep neural networks suffer from generalizing to a balanced testing criterion.
In this paper, we explore a novel yet simple way to alleviate this issue by augmenting less-frequent classes via translating samples from more-frequent classes.
Our experimental results on a variety of class-imbalanced datasets show that the proposed method improves the generalization on minority classes significantly compared to other existing re-sampling or re-weighting methods.
arXiv Detail & Related papers (2020-04-01T13:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.