VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting
- URL: http://arxiv.org/abs/2407.12592v1
- Date: Wed, 17 Jul 2024 14:15:52 GMT
- Title: VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting
- Authors: Sijie Zhao, Hao Chen, Xueliang Zhang, Pengfeng Xiao, Lei Bai, Wanli Ouyang,
- Abstract summary: We propose VegeDiff for the geospatial vegetation forecasting task.
VegeDiff is the first to employ a diffusion model to probabilistically capture the uncertainties in vegetation change processes.
By capturing the uncertainties in vegetation changes and modeling the complex influence of relevant variables, VegeDiff outperforms existing deterministic methods.
- Score: 58.12667617617306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of global climate change and frequent extreme weather events, forecasting future geospatial vegetation states under these conditions is of significant importance. The vegetation change process is influenced by the complex interplay between dynamic meteorological variables and static environmental variables, leading to high levels of uncertainty. Existing deterministic methods are inadequate in addressing this uncertainty and fail to accurately model the impact of these variables on vegetation, resulting in blurry and inaccurate forecasting results. To address these issues, we propose VegeDiff for the geospatial vegetation forecasting task. To our best knowledge, VegeDiff is the first to employ a diffusion model to probabilistically capture the uncertainties in vegetation change processes, enabling the generation of clear and accurate future vegetation states. VegeDiff also separately models the global impact of dynamic meteorological variables and the local effects of static environmental variables, thus accurately modeling the impact of these variables. Extensive experiments on geospatial vegetation forecasting tasks demonstrate the effectiveness of VegeDiff. By capturing the uncertainties in vegetation changes and modeling the complex influence of relevant variables, VegeDiff outperforms existing deterministic methods, providing clear and accurate forecasting results of future vegetation states. Interestingly, we demonstrate the potential of VegeDiff in applications of forecasting future vegetation states from multiple aspects and exploring the impact of meteorological variables on vegetation dynamics. The code of this work will be available at https://github.com/walking-shadow/ Official_VegeDiff.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Global Vegetation Modeling with Pre-Trained Weather Transformers [2.238622204691961]
We adapt the publicly available pre-trained FourCastNet to model vegetation activity.
We investigate how the learned global representation of the atmosphere's state can be transferred to model the normalized difference vegetation index (NDVI)
We demonstrate that leveraging pre-trained weather models improves the NDVI estimates compared to learning an NDVI model from scratch.
arXiv Detail & Related papers (2024-03-27T10:45:16Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Inferring the relationship between soil temperature and the normalized
difference vegetation index with machine learning [0.3613661942047476]
Changes in climate can greatly affect the phenology of plants, which can have important feedback effects.
In this study, we investigated the effect of soil temperature on the timing of the start of the season.
We also explored the impact of other meteorological variables, including air temperature, precipitation, and irradiance, on the inter-annual variation in vegetation phenology.
arXiv Detail & Related papers (2023-12-19T15:43:50Z) - Multi-modal learning for geospatial vegetation forecasting [1.8180482634934092]
We introduce GreenEarthNet, the first dataset specifically designed for high-resolution vegetation forecasting.
We also present Contextformer, a novel deep learning approach for predicting vegetation greenness from Sentinel 2 satellite images.
To the best of our knowledge, this work presents the first models for continental-scale vegetation modeling at fine resolution able to capture anomalies beyond the seasonal cycle.
arXiv Detail & Related papers (2023-03-28T17:59:05Z) - Learning to forecast vegetation greenness at fine resolution over Africa
with ConvLSTMs [2.7708222692419735]
We use a Convolutional LSTM (ConvLSTM) architecture to address this task.
We predict changes in the vegetation state in Africa using Sentinel-2 satellite NDVI, having ERA5 weather reanalysis, SMAP satellite measurements, and topography.
Ours results highlight how ConvLSTM models can not only forecast the seasonal evolution of NDVI at high resolution, but also the differential impacts of weather anomalies over the baselines.
arXiv Detail & Related papers (2022-10-24T23:03:36Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.