Contrastive Adversarial Training for Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2407.12782v1
- Date: Wed, 17 Jul 2024 17:59:21 GMT
- Title: Contrastive Adversarial Training for Unsupervised Domain Adaptation
- Authors: Jiahong Chen, Zhilin Zhang, Lucy Li, Behzad Shahrasbi, Arjun Mishra,
- Abstract summary: Domain adversarial training has been successfully adopted for various domain adaptation tasks.
Large models make adversarial training being easily biased towards source domain and hardly adapted to target domain.
We propose contrastive adversarial training (CAT) approach that leverages the labeled source domain samples to reinforce and regulate the feature generation for target domain.
- Score: 2.432037584128226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adversarial training has shown its effective capability for finding domain invariant feature representations and been successfully adopted for various domain adaptation tasks. However, recent advances of large models (e.g., vision transformers) and emerging of complex adaptation scenarios (e.g., DomainNet) make adversarial training being easily biased towards source domain and hardly adapted to target domain. The reason is twofold: relying on large amount of labelled data from source domain for large model training and lacking of labelled data from target domain for fine-tuning. Existing approaches widely focused on either enhancing discriminator or improving the training stability for the backbone networks. Due to unbalanced competition between the feature extractor and the discriminator during the adversarial training, existing solutions fail to function well on complex datasets. To address this issue, we proposed a novel contrastive adversarial training (CAT) approach that leverages the labeled source domain samples to reinforce and regulate the feature generation for target domain. Typically, the regulation forces the target feature distribution being similar to the source feature distribution. CAT addressed three major challenges in adversarial learning: 1) ensure the feature distributions from two domains as indistinguishable as possible for the discriminator, resulting in a more robust domain-invariant feature generation; 2) encourage target samples moving closer to the source in the feature space, reducing the requirement for generalizing classifier trained on the labeled source domain to unlabeled target domain; 3) avoid directly aligning unpaired source and target samples within mini-batch. CAT can be easily plugged into existing models and exhibits significant performance improvements.
Related papers
- Data-Efficient CLIP-Powered Dual-Branch Networks for Source-Free Unsupervised Domain Adaptation [4.7589762171821715]
Source-free Unsupervised Domain Adaptation (SF-UDA) aims to transfer a model's performance from a labeled source domain to an unlabeled target domain without direct access to source samples.
We introduce a data-efficient, CLIP-powered dual-branch network (CDBN) to address the dual challenges of limited source data and privacy concerns.
CDBN achieves near state-of-the-art performance with far fewer source domain samples than existing methods across 31 transfer tasks on seven datasets.
arXiv Detail & Related papers (2024-10-21T09:25:49Z) - Strong-Weak Integrated Semi-supervision for Unsupervised Single and
Multi Target Domain Adaptation [6.472434306724611]
Unsupervised domain adaptation (UDA) focuses on transferring knowledge learned in the labeled source domain to the unlabeled target domain.
In this paper, we propose a novel strong-weak integrated semi-supervision (SWISS) learning strategy for image classification.
arXiv Detail & Related papers (2023-09-12T19:08:54Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
It is essential to learn a cross-domain regressor to mitigate the domain shift.
This paper proposes a novel method Adversarial Bi-Regressor Network (ABRNet) to seek more effective cross-domain regression model.
arXiv Detail & Related papers (2022-09-20T18:38:28Z) - From Big to Small: Adaptive Learning to Partial-Set Domains [94.92635970450578]
Domain adaptation targets at knowledge acquisition and dissemination from a labeled source domain to an unlabeled target domain under distribution shift.
Recent advances show that deep pre-trained models of large scale endow rich knowledge to tackle diverse downstream tasks of small scale.
This paper introduces Partial Domain Adaptation (PDA), a learning paradigm that relaxes the identical class space assumption to that the source class space subsumes the target class space.
arXiv Detail & Related papers (2022-03-14T07:02:45Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
This paper proposes a novel adversarial scoring network (ASNet) to bridge the gap across domains from coarse to fine granularity.
Three sets of migration experiments show that the proposed methods achieve state-of-the-art counting performance.
arXiv Detail & Related papers (2021-07-27T14:47:24Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised domain adaptation (UDA) methods exploit domain adversarial training to align the features to reduce domain gap.
In this work, we propose an efficient optimization strategy named Re-enforceable Adversarial Domain Adaptation (RADA)
RADA aims to re-energize the domain discriminator during the training by using dynamic domain labels.
arXiv Detail & Related papers (2021-03-22T08:32:55Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
We propose a model referred Contradistinguisher that learns contrastive features and whose objective is to jointly learn to contradistinguish the unlabeled target domain in an unsupervised way.
We achieve the state-of-the-art on Office-31 and VisDA-2017 datasets in both single-source and multi-source settings.
arXiv Detail & Related papers (2020-05-25T19:54:38Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.