Multi-Granularity and Multi-modal Feature Interaction Approach for Text Video Retrieval
- URL: http://arxiv.org/abs/2407.12798v1
- Date: Fri, 21 Jun 2024 02:28:06 GMT
- Title: Multi-Granularity and Multi-modal Feature Interaction Approach for Text Video Retrieval
- Authors: Wenjun Li, Shudong Wang, Dong Zhao, Shenghui Xu, Zhaoming Pan, Zhimin Zhang,
- Abstract summary: The key of the text-to-video retrieval (TVR) task lies in learning the unique similarity between each pair of text (consisting of words) and video (consisting of audio and image frames) representations.
We propose a novel multi-granularity feature interaction module called MGFI, consisting of text-frame and word-frame.
We also introduce a cross-modal feature interaction module of audio and text called CMFI to solve the problem of insufficient expression of frames in the video.
- Score: 6.656989511639513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key of the text-to-video retrieval (TVR) task lies in learning the unique similarity between each pair of text (consisting of words) and video (consisting of audio and image frames) representations. However, some problems exist in the representation alignment of video and text, such as a text, and further each word, are of different importance for video frames. Besides, audio usually carries additional or critical information for TVR in the case that frames carry little valid information. Therefore, in TVR task, multi-granularity representation of text, including whole sentence and every word, and the modal of audio are salutary which are underutilized in most existing works. To address this, we propose a novel multi-granularity feature interaction module called MGFI, consisting of text-frame and word-frame, for video-text representations alignment. Moreover, we introduce a cross-modal feature interaction module of audio and text called CMFI to solve the problem of insufficient expression of frames in the video. Experiments on benchmark datasets such as MSR-VTT, MSVD, DiDeMo show that the proposed method outperforms the existing state-of-the-art methods.
Related papers
- Prompt Switch: Efficient CLIP Adaptation for Text-Video Retrieval [24.691270610091554]
In this paper, we aim to learn semantically-enhanced representations purely from the video, so that the video representations can be computed offline and reused for different texts.
We obtain state-of-the-art performances on three benchmark datasets, i.e., MSR-VTT, MSVD, and LSMDC.
arXiv Detail & Related papers (2023-08-15T08:54:25Z) - Audio-Enhanced Text-to-Video Retrieval using Text-Conditioned Feature
Alignment [16.304894187743013]
TEFAL is a TExt-conditioned Feature ALignment method that produces both audio and video representations conditioned on the text query.
Our approach employs two independent cross-modal attention blocks that enable the text to attend to the audio and video representations separately.
arXiv Detail & Related papers (2023-07-24T17:43:13Z) - Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection
to Image-Text Pre-Training [70.83385449872495]
The correlation between the vision and text is essential for video moment retrieval (VMR)
Existing methods rely on separate pre-training feature extractors for visual and textual understanding.
We propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments.
arXiv Detail & Related papers (2023-02-28T19:29:05Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
This work introduces a novel text-video localization pre-text task to enable fine-grained temporal and semantic alignment.
Specifically, text-video localization consists of moment retrieval, which predicts start and end boundaries in videos given the text description.
Our method connects the fine-grained frame representations with the word representations and implicitly distinguishes representations of different instances in the single modality.
arXiv Detail & Related papers (2023-01-18T12:15:47Z) - Contrastive Video-Language Learning with Fine-grained Frame Sampling [54.542962813921214]
FineCo is an approach to better learn video and language representations with a fine-grained contrastive objective operating on video frames.
It helps distil a video by selecting the frames that are semantically equivalent to the text, improving cross-modal correspondence.
arXiv Detail & Related papers (2022-10-10T22:48:08Z) - TVLT: Textless Vision-Language Transformer [89.31422264408002]
We present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs.
TVLT attains performance comparable to its text-based counterpart, on various multimodal tasks.
Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals.
arXiv Detail & Related papers (2022-09-28T15:08:03Z) - Text-Adaptive Multiple Visual Prototype Matching for Video-Text
Retrieval [125.55386778388818]
Cross-modal retrieval between videos and texts has gained increasing research interest due to the rapid emergence of videos on the web.
We propose a Text-Adaptive Multiple Visual Prototype Matching model, which automatically captures multiple prototypes to describe a video.
Our method outperforms state-of-the-art methods on four public video retrieval datasets.
arXiv Detail & Related papers (2022-09-27T11:13:48Z) - Multimodal Frame-Scoring Transformer for Video Summarization [4.266320191208304]
Multimodal Frame-Scoring Transformer (MFST) framework exploiting visual, text and audio features and scoring a video with respect to frames.
MFST framework first extracts each modality features (visual-text-audio) using pretrained encoders.
MFST trains the multimodal frame-scoring transformer that uses video-text-audio representations as inputs and predicts frame-level scores.
arXiv Detail & Related papers (2022-07-05T05:14:15Z) - X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval [26.581384985173116]
In text-video retrieval, the objective is to learn a cross-modal similarity function between a text and a video.
We propose a cross-modal attention model called X-Pool that reasons between a text and the frames of a video.
arXiv Detail & Related papers (2022-03-28T20:47:37Z) - VX2TEXT: End-to-End Learning of Video-Based Text Generation From
Multimodal Inputs [103.99315770490163]
We present a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio.
Experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks.
arXiv Detail & Related papers (2021-01-28T15:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.