Computational Politeness in Natural Language Processing: A Survey
- URL: http://arxiv.org/abs/2407.12814v1
- Date: Fri, 28 Jun 2024 06:46:36 GMT
- Title: Computational Politeness in Natural Language Processing: A Survey
- Authors: Priyanshu Priya, Mauajama Firdaus, Asif Ekbal,
- Abstract summary: Computational approach to politeness is the task of automatically predicting and generating politeness in text.
This article is a compilation of past works in computational politeness in natural language processing.
- Score: 29.082198141367574
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computational approach to politeness is the task of automatically predicting and generating politeness in text. This is a pivotal task for conversational analysis, given the ubiquity and challenges of politeness in interactions. The computational approach to politeness has witnessed great interest from the conversational analysis community. This article is a compilation of past works in computational politeness in natural language processing. We view four milestones in the research so far, viz. supervised and weakly-supervised feature extraction to identify and induce politeness in a given text, incorporation of context beyond the target text, study of politeness across different social factors, and study the relationship between politeness and various sociolinguistic cues. In this article, we describe the datasets, approaches, trends, and issues in computational politeness research. We also discuss representative performance values and provide pointers to future works, as given in the prior works. In terms of resources to understand the state-of-the-art, this survey presents several valuable illustrations, most prominently, a table summarizing the past papers along different dimensions, such as the types of features, annotation techniques, and datasets used.
Related papers
- From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Neural Conversation Models and How to Rein Them in: A Survey of Failures
and Fixes [17.489075240435348]
Recent conditional language models are able to continue any kind of text source in an often seemingly fluent way.
From a linguistic perspective, contributing to a conversation is high.
Recent approaches try to tame the underlying language models at various intervention points.
arXiv Detail & Related papers (2023-08-11T12:07:45Z) - Robust Visual Question Answering: Datasets, Methods, and Future
Challenges [23.59923999144776]
Visual question answering requires a system to provide an accurate natural language answer given an image and a natural language question.
Previous generic VQA methods often exhibit a tendency to memorize biases present in the training data rather than learning proper behaviors, such as grounding images before predicting answers.
Various datasets and debiasing methods have been proposed to evaluate and enhance the VQA robustness, respectively.
arXiv Detail & Related papers (2023-07-21T10:12:09Z) - An Inclusive Notion of Text [69.36678873492373]
We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP.
We introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling.
arXiv Detail & Related papers (2022-11-10T14:26:43Z) - Language bias in Visual Question Answering: A Survey and Taxonomy [0.0]
We conduct a comprehensive review and analysis of this field for the first time.
We classify the existing methods according to three categories, including enhancing visual information.
The causes of language bias are revealed and classified.
arXiv Detail & Related papers (2021-11-16T15:01:24Z) - From Show to Tell: A Survey on Image Captioning [48.98681267347662]
Connecting Vision and Language plays an essential role in Generative Intelligence.
Research in image captioning has not reached a conclusive answer yet.
This work aims at providing a comprehensive overview and categorization of image captioning approaches.
arXiv Detail & Related papers (2021-07-14T18:00:54Z) - Deep Learning for Text Style Transfer: A Survey [71.8870854396927]
Text style transfer is an important task in natural language generation, which aims to control certain attributes in the generated text.
We present a systematic survey of the research on neural text style transfer, spanning over 100 representative articles since the first neural text style transfer work in 2017.
We discuss the task formulation, existing datasets and subtasks, evaluation, as well as the rich methodologies in the presence of parallel and non-parallel data.
arXiv Detail & Related papers (2020-11-01T04:04:43Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
This paper surveys the components of modeling approaches relaying task impacts across various generation tasks such as storytelling, summarization, translation etc.
We present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them.
arXiv Detail & Related papers (2020-10-14T17:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.