Lightweight Large Language Model for Medication Enquiry: Med-Pal
- URL: http://arxiv.org/abs/2407.12822v1
- Date: Tue, 2 Jul 2024 03:32:39 GMT
- Title: Lightweight Large Language Model for Medication Enquiry: Med-Pal
- Authors: Kabilan Elangovan, Jasmine Chiat Ling Ong, Liyuan Jin, Benjamin Jun Jie Seng, Yu Heng Kwan, Lit Soo Tan, Ryan Jian Zhong, Justina Koi Li Ma, YuHe Ke, Nan Liu, Kathleen M Giacomini, Daniel Shu Wei Ting,
- Abstract summary: Large Language Models (LLMs) have emerged as a potential solution to assist digital health development with patient education.
We trained and validated Med-Pal, a medication domain-specific LLM-chatbot fine-tuned with a fine-grained and expert curated dataset.
- Score: 2.3095351248532268
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large Language Models (LLMs) have emerged as a potential solution to assist digital health development with patient education, commonly medication-related enquires. We trained and validated Med-Pal, a medication domain-specific LLM-chatbot fine-tuned with a fine-grained and expert curated dataset from a selection of five light-weighted open-source LLMs of smaller parameter size (7 billion or less) regarding computational constraints and prioritizing operational efficiency. A multi-disciplinary team performed a clinical evaluation of LLMs responses using the SCORE criteria, focusing on safety, accuracy, bias, reproducibility, and ease of understanding. Best performing light-weighted LLM was chosen as Med-Pal for further engineering with guard-railing using adversarial prompting. Med-Pal and existing light-weighted LLMs, including pretrained Biomistral and finetuned Meerkat, were validated on an independent dataset on a broad range of medication-related questions (231 in total), 12 different question types across 14 different medication classes. Mistral-7b emerged as the top performer among selected lightweight LLMs, achieving the highest median score of 14 and 71.9% high-quality responses in accuracy and safety domains, hence chosen as the backbone LLM for Med-Pal. When compared against Biomistral, Med-pal outperformed in generating responses appropriate for patient communication, with significant reductions bias and errors typical of general LLMs. Comparable performance was observed when comparing Med-Pal with Meerkat. Med-Pal showcases the feasibility of developing and employing fine-tuned light-weighted LLMs to enhance digital health communications.
Related papers
- Language Models And A Second Opinion Use Case: The Pocket Professional [0.0]
This research tests the role of Large Language Models (LLMs) as formal second opinion tools in professional decision-making.
The work analyzed 183 challenging medical cases from Medscape over a 20-month period, testing multiple LLMs' performance against crowd-sourced physician responses.
arXiv Detail & Related papers (2024-10-27T23:48:47Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - D-NLP at SemEval-2024 Task 2: Evaluating Clinical Inference Capabilities of Large Language Models [5.439020425819001]
Large language models (LLMs) have garnered significant attention and widespread usage due to their impressive performance in various tasks.
However, they are not without their own set of challenges, including issues such as hallucinations, factual inconsistencies, and limitations in numerical-quantitative reasoning.
arXiv Detail & Related papers (2024-05-07T10:11:14Z) - Med42 -- Evaluating Fine-Tuning Strategies for Medical LLMs: Full-Parameter vs. Parameter-Efficient Approaches [7.3384872719063114]
We develop and refined a series of medical Large Language Models (LLMs) based on the Llama-2 architecture.
Our experiments systematically evaluate the effectiveness of these tuning strategies across various well-known medical benchmarks.
arXiv Detail & Related papers (2024-04-23T06:36:21Z) - OpenMedLM: Prompt engineering can out-perform fine-tuning in medical
question-answering with open-source large language models [4.556924372105915]
Open-source (OS) models represent a key area of growth for medical LLMs.
We present OpenMedLM, a prompting platform which delivers state-of-the-art (SOTA) performance for OS LLMs on medical benchmarks.
arXiv Detail & Related papers (2024-02-29T17:19:39Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - MEDITRON-70B: Scaling Medical Pretraining for Large Language Models [91.25119823784705]
Large language models (LLMs) can potentially democratize access to medical knowledge.
We release MEDITRON: a suite of open-source LLMs with 7B and 70B parameters adapted to the medical domain.
arXiv Detail & Related papers (2023-11-27T18:49:43Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - Augmenting Black-box LLMs with Medical Textbooks for Biomedical Question Answering (Published in Findings of EMNLP 2024) [48.17095875619711]
We present a system called LLMs Augmented with Medical Textbooks (LLM-AMT)
LLM-AMT integrates authoritative medical textbooks into the LLMs' framework using plug-and-play modules.
We found that medical textbooks as a retrieval corpus is proven to be a more effective knowledge database than Wikipedia in the medical domain.
arXiv Detail & Related papers (2023-09-05T13:39:38Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.