Applicability of Large Language Models and Generative Models for Legal Case Judgement Summarization
- URL: http://arxiv.org/abs/2407.12848v2
- Date: Sat, 20 Jul 2024 05:50:41 GMT
- Title: Applicability of Large Language Models and Generative Models for Legal Case Judgement Summarization
- Authors: Aniket Deroy, Kripabandhu Ghosh, Saptarshi Ghosh,
- Abstract summary: In recent years, generative models including abstractive summarization models and Large language models (LLMs) have gained huge popularity.
In this paper, we explore the applicability of such models for legal case judgement summarization.
- Score: 5.0645491201288495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic summarization of legal case judgements, which are known to be long and complex, has traditionally been tried via extractive summarization models. In recent years, generative models including abstractive summarization models and Large language models (LLMs) have gained huge popularity. In this paper, we explore the applicability of such models for legal case judgement summarization. We applied various domain specific abstractive summarization models and general domain LLMs as well as extractive summarization models over two sets of legal case judgements from the United Kingdom (UK) Supreme Court and the Indian (IN) Supreme Court and evaluated the quality of the generated summaries. We also perform experiments on a third dataset of legal documents of a different type, Government reports from the United States (US). Results show that abstractive summarization models and LLMs generally perform better than the extractive methods as per traditional metrics for evaluating summary quality. However, detailed investigation shows the presence of inconsistencies and hallucinations in the outputs of the generative models, and we explore ways to reduce the hallucinations and inconsistencies in the summaries. Overall, the investigation suggests that further improvements are needed to enhance the reliability of abstractive models and LLMs for legal case judgement summarization. At present, a human-in-the-loop technique is more suitable for performing manual checks to identify inconsistencies in the generated summaries.
Related papers
- LexAbSumm: Aspect-based Summarization of Legal Decisions [1.3723120574076126]
LexAbSumm is a dataset designed for aspect-based summarization of legal case decisions, sourced from the European Court of Human Rights jurisdiction.
We evaluate several abstractive summarization models tailored for longer documents on LexAbSumm, revealing a challenge in conditioning these models to produce aspect-specific summaries.
arXiv Detail & Related papers (2024-03-31T08:00:40Z) - AugSumm: towards generalizable speech summarization using synthetic
labels from large language model [61.73741195292997]
Abstractive speech summarization (SSUM) aims to generate human-like summaries from speech.
conventional SSUM models are mostly trained and evaluated with a single ground-truth (GT) human-annotated deterministic summary.
We propose AugSumm, a method to leverage large language models (LLMs) as a proxy for human annotators to generate augmented summaries.
arXiv Detail & Related papers (2024-01-10T18:39:46Z) - Fair Abstractive Summarization of Diverse Perspectives [103.08300574459783]
A fair summary should provide a comprehensive coverage of diverse perspectives without underrepresenting certain groups.
We first formally define fairness in abstractive summarization as not underrepresenting perspectives of any groups of people.
We propose four reference-free automatic metrics by measuring the differences between target and source perspectives.
arXiv Detail & Related papers (2023-11-14T03:38:55Z) - Modeling Legal Reasoning: LM Annotation at the Edge of Human Agreement [3.537369004801589]
We study the classification of legal reasoning according to jurisprudential philosophy.
We use a novel dataset of historical United States Supreme Court opinions annotated by a team of domain experts.
We find that generative models perform poorly when given instructions equal to the instructions presented to human annotators.
arXiv Detail & Related papers (2023-10-27T19:27:59Z) - How Ready are Pre-trained Abstractive Models and LLMs for Legal Case
Judgement Summarization? [4.721618284417204]
In recent years, abstractive summarization models are gaining popularity.
Legal domain-specific pre-trained abstractive summarization models are now available.
General-domain pre-trained Large Language Models (LLMs) are known to generate high-quality text.
arXiv Detail & Related papers (2023-06-02T03:16:19Z) - Correcting Diverse Factual Errors in Abstractive Summarization via
Post-Editing and Language Model Infilling [56.70682379371534]
We show that our approach vastly outperforms prior methods in correcting erroneous summaries.
Our model -- FactEdit -- improves factuality scores by over 11 points on CNN/DM and over 31 points on XSum.
arXiv Detail & Related papers (2022-10-22T07:16:19Z) - Legal Case Document Summarization: Extractive and Abstractive Methods
and their Evaluation [11.502115682980559]
Summarization of legal case judgement documents is a challenging problem in Legal NLP.
Not much analyses exist on how different families of summarization models perform when applied to legal case documents.
arXiv Detail & Related papers (2022-10-14T05:43:08Z) - Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven
Cloze Reward [42.925345819778656]
We present ASGARD, a novel framework for Abstractive Summarization with Graph-Augmentation and semantic-driven RewarD.
We propose the use of dual encoders---a sequential document encoder and a graph-structured encoder---to maintain the global context and local characteristics of entities.
Results show that our models produce significantly higher ROUGE scores than a variant without knowledge graph as input on both New York Times and CNN/Daily Mail datasets.
arXiv Detail & Related papers (2020-05-03T18:23:06Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Unsupervised Opinion Summarization with Noising and Denoising [85.49169453434554]
We create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary, and generating noisy versions thereof.
At test time, the model accepts genuine reviews and generates a summary containing salient opinions, treating those that do not reach consensus as noise.
arXiv Detail & Related papers (2020-04-21T16:54:57Z) - Enhancing Factual Consistency of Abstractive Summarization [57.67609672082137]
We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process.
We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems.
arXiv Detail & Related papers (2020-03-19T07:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.