Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems
- URL: http://arxiv.org/abs/2407.13098v2
- Date: Wed, 28 Aug 2024 07:18:30 GMT
- Title: Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems
- Authors: Weitang Li, Jiajun Ren, Hengrui Yang, Haobin Wang, Zhigang Shuai,
- Abstract summary: Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors.
We present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.
Related papers
- Connectivity matters: Impact of bath modes ordering and geometry in Open Quantum System simulation with Matrix Product States [0.0]
We show that simple orderings of bosonic environmental modes, which enable to write the joint System + Environments state as a matrix product state, reduce considerably the bond dimension required for convergence.
Results suggest that complex correlation analyses in order to tweak tensor networks topology are usually not necessary.
arXiv Detail & Related papers (2024-09-06T09:20:08Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Pairing-based graph neural network for simulating quantum materials [0.8192907805418583]
We develop a pairing-based graph neural network for simulating quantum many-body systems.
Variational Monte Carlo with our neural network simultaneously provides an accurate, flexible, and scalable method for simulating many-electron systems.
arXiv Detail & Related papers (2023-11-03T17:12:29Z) - Tree tensor network state approach for solving hierarchical equations of
motion [0.0]
The hierarchical equations of motion (HEOM) method is a numerically exact open quantum system dynamics approach.
We show that, the proposed HEOM+TTNS approach yields consistent results with that of the conventional HEOM method.
Besides, the simulation with a genuine TTNS is four times faster than a one-dimensional matrix product state decomposition scheme.
arXiv Detail & Related papers (2023-04-11T11:40:15Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - A Multisite Decomposition of the Tensor Network Path Integrals [0.0]
We extend the tensor network path integral (TNPI) framework to efficiently simulate quantum systems with local dissipative environments.
The MS-TNPI method is useful for studying a variety of extended quantum systems coupled with solvents.
arXiv Detail & Related papers (2021-09-20T17:55:53Z) - A tensor network representation of path integrals: Implementation and
analysis [0.0]
We introduce a novel tensor network-based decomposition of path integral simulations involving Feynman-Vernon influence functional.
The finite temporarily non-local interactions introduced by the influence functional can be captured very efficiently using matrix product state representation.
The flexibility of the AP-TNPI framework makes it a promising new addition to the family of path integral methods for non-equilibrium quantum dynamics.
arXiv Detail & Related papers (2021-06-23T16:41:54Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.