SOMONITOR: Explainable Marketing Data Processing and Analysis with Large Language Models
- URL: http://arxiv.org/abs/2407.13117v1
- Date: Thu, 18 Jul 2024 02:55:52 GMT
- Title: SOMONITOR: Explainable Marketing Data Processing and Analysis with Large Language Models
- Authors: Qi Yang, Sergey Nikolenko, Marlo Ongpin, Ilia Gossoudarev, Yu-Yi Chu-Farseeva, Aleksandr Farseev,
- Abstract summary: We introduce an explainable AI framework SoMonitor.
SoMonitor aims to synergize human intuition with AI-based efficiency.
It helps marketers across all stages of the marketing funnel.
- Score: 43.28262218695844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online marketing faces formidable challenges in managing and interpreting immense volumes of data necessary for competitor analysis, content research, and strategic branding. It is impossible to review hundreds to thousands of transient online content items by hand, and partial analysis often leads to suboptimal outcomes and poorly performing campaigns. We introduce an explainable AI framework SoMonitor that aims to synergize human intuition with AI-based efficiency, helping marketers across all stages of the marketing funnel, from strategic planning to content creation and campaign execution. SoMonitor incorporates a CTR prediction and ranking model for advertising content and uses large language models (LLMs) to process high-performing competitor content, identifying core content pillars such as target audiences, customer needs, and product features. These pillars are then organized into broader categories, including communication themes and targeted customer personas. By integrating these insights with data from the brand's own advertising campaigns, SoMonitor constructs a narrative for addressing new customer personas and simultaneously generates detailed content briefs in the form of user stories that can be directly applied by marketing teams to streamline content production and campaign execution. The adoption of SoMonitor in daily operations allows digital marketers to quickly parse through extensive datasets, offering actionable insights that significantly enhance campaign effectiveness and overall job satisfaction
Related papers
- Context-aware Advertisement Modeling and Applications in Rapid Transit Systems [1.342834401139078]
We present an advertisement model using behavioral and tracking analysis.
We present a model using the agent-based modeling (ABM) technique, with the target audience of rapid transit system users to target the right person for advertisement applications.
arXiv Detail & Related papers (2024-09-16T02:59:36Z) - Neural Insights for Digital Marketing Content Design [22.922947923206756]
We present a neural-network-based system that scores and extracts insights from a marketing content design.
Our insights not only point out the advantages and drawbacks of a given current content, but also provide design recommendations based on historical data.
arXiv Detail & Related papers (2023-02-02T21:04:47Z) - Hierarchical Capsule Prediction Network for Marketing Campaigns Effect [8.925783896679267]
The effect prediction for marketing campaigns in a real industrial scenario is very complex and challenging.
In this paper, we provide an in-depth analysis of the underlying parse tree-like structure involved in the effect prediction task.
We further establish a Hierarchical Capsule Prediction Network (HapNet) for predicting the effects of marketing campaigns.
arXiv Detail & Related papers (2022-08-22T07:39:50Z) - Persuasion Strategies in Advertisements [68.70313043201882]
We introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies.
We then formulate the task of persuasion strategy prediction with multi-modal learning.
We conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies.
arXiv Detail & Related papers (2022-08-20T07:33:13Z) - Personality-Driven Social Multimedia Content Recommendation [68.46899477180837]
We investigate the impact of human personality traits on the content recommendation model by applying a novel personality-driven multi-view content recommender system.
Our experimental results and real-world case study demonstrate not just PersiC's ability to perform efficient human personality-driven multi-view content recommendation, but also allow for actionable digital ad strategy recommendations.
arXiv Detail & Related papers (2022-07-25T14:37:18Z) - Lessons from the AdKDD'21 Privacy-Preserving ML Challenge [57.365745458033075]
A prominent proposal at W3C only allows sharing advertising signals through aggregated, differentially private reports of past displays.
To study this proposal extensively, an open Privacy-Preserving Machine Learning Challenge took place at AdKDD'21.
A key finding is that learning models on large, aggregated data in the presence of a small set of unaggregated data points can be surprisingly efficient and cheap.
arXiv Detail & Related papers (2022-01-31T11:09:59Z) - Data-Driven Market Segmentation in Hospitality Using Unsupervised
Machine Learning [0.0]
This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering.
The purpose of the study is to provide steps in the process from raw data to actionable insights.
arXiv Detail & Related papers (2021-11-04T13:21:15Z) - SoMin.ai: Personality-Driven Content Generation Platform [60.49416044866648]
We showcase the World's first personality-driven marketing content generation platform, called SoMin.ai.
The platform combines deep multi-view personality profiling framework and style generative adversarial networks.
It can be used for the enhancement of the social networking user experience as well as for content marketing routines.
arXiv Detail & Related papers (2020-11-30T08:33:39Z) - Comprehensive Information Integration Modeling Framework for Video
Titling [124.11296128308396]
We integrate comprehensive sources of information, including the content of consumer-generated videos, the narrative comment sentences supplied by consumers, and the product attributes, in an end-to-end modeling framework.
To tackle this issue, the proposed method consists of two processes, i.e., granular-level interaction modeling and abstraction-level story-line summarization.
We collect a large-scale dataset accordingly from real-world data in Taobao, a world-leading e-commerce platform.
arXiv Detail & Related papers (2020-06-24T10:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.