Learning Camouflaged Object Detection from Noisy Pseudo Label
- URL: http://arxiv.org/abs/2407.13157v1
- Date: Thu, 18 Jul 2024 04:53:51 GMT
- Title: Learning Camouflaged Object Detection from Noisy Pseudo Label
- Authors: Jin Zhang, Ruiheng Zhang, Yanjiao Shi, Zhe Cao, Nian Liu, Fahad Shahbaz Khan,
- Abstract summary: This paper introduces the first weakly semi-supervised Camouflaged Object Detection (COD) method.
It aims for budget-efficient and high-precision camouflaged object segmentation with an extremely limited number of fully labeled images.
We propose a noise correction loss that facilitates the model's learning of correct pixels in the early learning stage.
When using only 20% of fully labeled data, our method shows superior performance over the state-of-the-art methods.
- Score: 60.9005578956798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing Camouflaged Object Detection (COD) methods rely heavily on large-scale pixel-annotated training sets, which are both time-consuming and labor-intensive. Although weakly supervised methods offer higher annotation efficiency, their performance is far behind due to the unclear visual demarcations between foreground and background in camouflaged images. In this paper, we explore the potential of using boxes as prompts in camouflaged scenes and introduce the first weakly semi-supervised COD method, aiming for budget-efficient and high-precision camouflaged object segmentation with an extremely limited number of fully labeled images. Critically, learning from such limited set inevitably generates pseudo labels with serious noisy pixels. To address this, we propose a noise correction loss that facilitates the model's learning of correct pixels in the early learning stage, and corrects the error risk gradients dominated by noisy pixels in the memorization stage, ultimately achieving accurate segmentation of camouflaged objects from noisy labels. When using only 20% of fully labeled data, our method shows superior performance over the state-of-the-art methods.
Related papers
- CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection [58.07124777351955]
We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning(DRCL)
DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.
Our code will be available soon.
arXiv Detail & Related papers (2024-08-15T09:33:43Z) - Superpixel-guided Iterative Learning from Noisy Labels for Medical Image
Segmentation [24.557755528031453]
We develop a robust iterative learning strategy that combines noise-aware training of segmentation network and noisy label refinement.
Experiments on two benchmarks show that our method outperforms recent state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-21T14:27:36Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
We propose a mixed supervision learning framework for super high-resolution images.
During the patch training stage, this framework can make use of coarse image-level labels to refine self-supervised learning.
A comprehensive strategy is proposed to suppress pixel-level false positives and false negatives.
arXiv Detail & Related papers (2021-07-02T09:46:06Z) - Distilling effective supervision for robust medical image segmentation
with noisy labels [21.68138582276142]
We propose a novel framework to address segmenting with noisy labels by distilling effective supervision information from both pixel and image levels.
In particular, we explicitly estimate the uncertainty of every pixel as pixel-wise noise estimation.
We present an image-level robust learning method to accommodate more information as the complements to pixel-level learning.
arXiv Detail & Related papers (2021-06-21T13:33:38Z) - Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object
Detection [66.10057490293981]
We propose a data-uncertainty guided multi-phase learning method for semi-supervised object detection.
Our method behaves extraordinarily compared to baseline approaches and outperforms them by a large margin.
arXiv Detail & Related papers (2021-03-29T09:27:23Z) - Towards Noise-resistant Object Detection with Noisy Annotations [119.63458519946691]
Training deep object detectors requires significant amount of human-annotated images with accurate object labels and bounding box coordinates.
Noisy annotations are much more easily accessible, but they could be detrimental for learning.
We address the challenging problem of training object detectors with noisy annotations, where the noise contains a mixture of label noise and bounding box noise.
arXiv Detail & Related papers (2020-03-03T01:32:16Z) - Learning Not to Learn in the Presence of Noisy Labels [104.7655376309784]
We show that a new class of loss functions called the gambler's loss provides strong robustness to label noise across various levels of corruption.
We show that training with this loss function encourages the model to "abstain" from learning on the data points with noisy labels.
arXiv Detail & Related papers (2020-02-16T09:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.