Towards Dynamic Feature Acquisition on Medical Time Series by Maximizing Conditional Mutual Information
- URL: http://arxiv.org/abs/2407.13429v1
- Date: Thu, 18 Jul 2024 11:54:34 GMT
- Title: Towards Dynamic Feature Acquisition on Medical Time Series by Maximizing Conditional Mutual Information
- Authors: Fedor Sergeev, Paola Malsot, Gunnar Rätsch, Vincent Fortuin,
- Abstract summary: Knowing which of a time series to measure and when is a key task in medicine, wearables.
Inspired by conditional mutual information, we propose an approach to train acquirers end-to-end using only downstream loss.
- Score: 11.882952809819855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowing which features of a multivariate time series to measure and when is a key task in medicine, wearables, and robotics. Better acquisition policies can reduce costs while maintaining or even improving the performance of downstream predictors. Inspired by the maximization of conditional mutual information, we propose an approach to train acquirers end-to-end using only the downstream loss. We show that our method outperforms random acquisition policy, matches a model with an unrestrained budget, but does not yet overtake a static acquisition strategy. We highlight the assumptions and outline avenues for future work.
Related papers
- NOCTA: Non-Greedy Objective Cost-Tradeoff Acquisition for Longitudinal Data [23.75715594365611]
We propose NOCTA, a Non-Greedy Objective Cost-Tradeoff Acquisition method.<n>We first introduce a cohesive estimation target for our NOCTA setting, and then develop two complementary estimators.<n>Experiments on synthetic and real-world medical datasets demonstrate that both NOCTA variants outperform existing baselines.
arXiv Detail & Related papers (2025-07-16T17:00:41Z) - Near-Optimal Dynamic Regret for Adversarial Linear Mixture MDPs [63.47351876442425]
We study episodic linear mixture MDPs with the unknown transition and adversarial rewards under full-information feedback.
We propose a novel algorithm that combines the benefits of two popular methods: occupancy-measure-based and policy-based.
Our algorithm enjoys an $widetildemathcalO(d sqrtH3 K + sqrtHK(H + barP_K$)$ dynamic regret, where $d$ is the feature dimension.
arXiv Detail & Related papers (2024-11-05T13:55:52Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Metalearners for Ranking Treatment Effects [1.469168639465869]
We show how learning to rank can maximize the area under a policy's incremental profit curve.
We show how learning to rank can maximize the area under a policy's incremental profit curve.
arXiv Detail & Related papers (2024-05-03T15:31:18Z) - Bayesian Inverse Transition Learning for Offline Settings [30.10905852013852]
Reinforcement learning is commonly used for sequential decision-making in domains such as healthcare and education.
We propose a new constraint-based approach that captures our desiderata for reliably learning a posterior distribution of the transition dynamics $T$.
Our results demonstrate that by using our constraints, we learn a high-performing policy, while considerably reducing the policy's variance over different datasets.
arXiv Detail & Related papers (2023-08-09T17:08:29Z) - Estimating Conditional Mutual Information for Dynamic Feature Selection [14.706269510726356]
Dynamic feature selection is a promising paradigm to reduce feature acquisition costs and provide transparency into a model's predictions.
Here, we take an information-theoretic perspective and prioritize features based on their mutual information with the response variable.
Our method provides consistent gains over recent methods across a variety of datasets.
arXiv Detail & Related papers (2023-06-05T23:03:03Z) - Revenue Management without Demand Forecasting: A Data-Driven Approach
for Bid Price Generation [25.53238782264327]
We present a data-driven approach to revenue management which eliminates the need for demand forecasting and optimization techniques.
We utilize a neural network algorithm to project bid price estimations into the future.
Our results show that our data-driven methodology stays near a theoretical optimum (1% revenue gap) for a wide-range of settings.
arXiv Detail & Related papers (2023-04-14T21:10:13Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - Autoregressive Bandits [58.46584210388307]
We propose a novel online learning setting, Autoregressive Bandits, in which the observed reward is governed by an autoregressive process of order $k$.
We show that, under mild assumptions on the reward process, the optimal policy can be conveniently computed.
We then devise a new optimistic regret minimization algorithm, namely, AutoRegressive Upper Confidence Bound (AR-UCB), that suffers sublinear regret of order $widetildemathcalO left( frac(k+1)3/2sqrtnT (1-G
arXiv Detail & Related papers (2022-12-12T21:37:36Z) - Lifelong Hyper-Policy Optimization with Multiple Importance Sampling
Regularization [40.17392342387002]
We propose an approach which learns a hyper-policy, whose input is time, that outputs the parameters of the policy to be queried at that time.
This hyper-policy is trained to maximize the estimated future performance, efficiently reusing past data by means of importance sampling.
We empirically validate our approach, in comparison with state-of-the-art algorithms, on realistic environments.
arXiv Detail & Related papers (2021-12-13T13:09:49Z) - APS: Active Pretraining with Successor Features [96.24533716878055]
We show that by reinterpreting and combining successorcitepHansenFast with non entropy, the intractable mutual information can be efficiently optimized.
The proposed method Active Pretraining with Successor Feature (APS) explores the environment via non entropy, and the explored data can be efficiently leveraged to learn behavior.
arXiv Detail & Related papers (2021-08-31T16:30:35Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
We present a policy gradient algorithm that maximizes a forecast of future performance.
We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques.
arXiv Detail & Related papers (2020-05-17T03:41:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.