A Construction of Quantum Stabilizer Codes from Classical Codes and Butson Hadamard Matrices
- URL: http://arxiv.org/abs/2407.13527v1
- Date: Thu, 18 Jul 2024 14:00:38 GMT
- Title: A Construction of Quantum Stabilizer Codes from Classical Codes and Butson Hadamard Matrices
- Authors: Bulent Sarac, Damla Acar,
- Abstract summary: We show that if there exist a classical linear code C is a subset of F_qn of dimension k, then there exists an [[nm, ks, d]]_q quantum stabilizer code with d determined by C and D.
We consider the same construction of a quantum code for a general normalized Butson Hadamard matrix and search for a condition for the quantum code to be a stabilizer code.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we give a constructive proof to show that if there exist a classical linear code C is a subset of F_q^n of dimension k and a classical linear code D is a subset of F_q^k^m of dimension s, where q is a power of a prime number p, then there exists an [[nm, ks, d]]_q quantum stabilizer code with d determined by C and D by identifying the stabilizer group of the code. In the construction, we use a particular type of Butson Hadamard matrices equivalent to multiple Kronecker products of the Fourier matrix of order p. We also consider the same construction of a quantum code for a general normalized Butson Hadamard matrix and search for a condition for the quantum code to be a stabilizer code.
Related papers
- Puncturing Quantum Stabilizer Codes [28.796017729194713]
We generalize the puncturing procedure to allow more freedom in the choice of which coded states are kept and which are removed.
We present several ways to utilize this for the search of codes with good or even optimal parameters.
arXiv Detail & Related papers (2024-10-23T10:31:34Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Sequentially Encodable Codeword Stabilized Codes [1.8757823231879849]
An m-uniform quantum state on n qubits is an entangled state in which every m-qubit subsystem is maximally mixed.
We propose measurement-based protocols for encoding into code states and recovery of logical qubits from code states.
arXiv Detail & Related papers (2024-05-09T23:28:38Z) - Butson Hadamard matrices, bent sequences, and spherical codes [15.98720468046758]
We explore a notion of bent sequence attached to the data consisting of an Hadamard matrix of order $n$ defined over the complex $qth$ roots of unity.
In particular we construct self-dual bent sequences for various $qle 60$ and lengths $nle 21.$ construction methods comprise the resolution of systems by Groebner bases and eigenspace computations.
arXiv Detail & Related papers (2023-11-01T08:03:11Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum Algorithms based on the Block-Encoding Framework for Matrix
Functions by Contour Integrals [1.5293427903448018]
We show a framework to implement the linear combination of the inverses on quantum computers.
We propose a quantum algorithm for matrix functions based on the framework.
arXiv Detail & Related papers (2021-06-15T12:10:35Z) - Constructing quantum codes from any classical code and their embedding in ground space of local Hamiltonians [7.092674229752723]
We introduce a framework that takes it any classical code and explicitly constructs the corresponding QEC code.
A concrete advantage is that the desirable properties of a classical code are automatically incorporated in the design of the resulting quantum code.
arXiv Detail & Related papers (2020-12-02T19:00:19Z) - Modifying method of constructing quantum codes from highly entangled
states [0.0]
We provide explicit constructions for codewords, encoding procedure and stabilizer formalism of the QECCs.
We modify the method to produce another set of stabilizer QECCs that encode a logical qudit into a subspace spanned by AME states.
arXiv Detail & Related papers (2020-05-04T12:28:58Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.