Compressing Structured Tensor Algebra
- URL: http://arxiv.org/abs/2407.13726v1
- Date: Thu, 18 Jul 2024 17:25:17 GMT
- Title: Compressing Structured Tensor Algebra
- Authors: Mahdi Ghorbani, Emilien Bauer, Tobias Grosser, Amir Shaikhha,
- Abstract summary: DASTAC is a framework to propagate the tensors's captured high-level structure down to low-level code generation.
Our methodology reduces memory footprint by automatically detecting the best data layout.
We show that DASTAC achieves 1 to 2 orders of magnitude speedup over TACO, a state-of-the-art sparse tensor compiler, and StructTensor, a state-of-the-art structured tensor algebra compiler.
- Score: 1.2624532490634646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor algebra is a crucial component for data-intensive workloads such as machine learning and scientific computing. As the complexity of data grows, scientists often encounter a dilemma between the highly specialized dense tensor algebra and efficient structure-aware algorithms provided by sparse tensor algebra. In this paper, we introduce DASTAC, a framework to propagate the tensors's captured high-level structure down to low-level code generation by incorporating techniques such as automatic data layout compression, polyhedral analysis, and affine code generation. Our methodology reduces memory footprint by automatically detecting the best data layout, heavily benefits from polyhedral optimizations, leverages further optimizations, and enables parallelization through MLIR. Through extensive experimentation, we show that DASTAC achieves 1 to 2 orders of magnitude speedup over TACO, a state-of-the-art sparse tensor compiler, and StructTensor, a state-of-the-art structured tensor algebra compiler, with a significantly lower memory footprint.
Related papers
- Compute Better Spent: Replacing Dense Layers with Structured Matrices [77.61728033234233]
We identify more efficient alternatives to dense matrices, as exemplified by the success of convolutional networks in the image domain.
We show that different structures often require drastically different initialization scales and learning rates, which are crucial to performance.
We propose a novel matrix family containing Monarch matrices, the Block-Train, which we show performs better than dense for the same compute on multiple tasks.
arXiv Detail & Related papers (2024-06-10T13:25:43Z) - Power of $\ell_1$-Norm Regularized Kaczmarz Algorithms for High-Order Tensor Recovery [8.812294191190896]
We propose novel Kaczmarz algorithms for recovering high-order tensors characterized by sparse and/or low-rank structures.
A variety of numerical experiments on both synthetic and real-world datasets demonstrate the effectiveness and significant potential of the proposed methods.
arXiv Detail & Related papers (2024-05-14T02:06:53Z) - CORE: Common Random Reconstruction for Distributed Optimization with
Provable Low Communication Complexity [110.50364486645852]
Communication complexity has become a major bottleneck for speeding up training and scaling up machine numbers.
We propose Common Om REOm, which can be used to compress information transmitted between machines.
arXiv Detail & Related papers (2023-09-23T08:45:27Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - oneDNN Graph Compiler: A Hybrid Approach for High-Performance Deep
Learning Compilation [8.64220475114214]
oneDNN Graph Compiler employs a hybrid approach of using techniques from both compiler optimization and expert-tuned kernels for high performance code generation.
Experimental results demonstrate significant performance gains over existing tensor compiler and primitives library for performance-critical computation graphs.
arXiv Detail & Related papers (2023-01-03T19:52:17Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
This paper tackles tensor robust principal component analysis (RPCA)
It aims to recover a low-rank tensor from its observations contaminated by sparse corruptions.
We show that the proposed algorithm achieves better and more scalable performance than state-of-the-art matrix and tensor RPCA algorithms.
arXiv Detail & Related papers (2022-06-18T04:01:32Z) - A Fast Parallel Tensor Decomposition with Optimal Stochastic Gradient
Descent: an Application in Structural Damage Identification [1.536989504296526]
We propose a novel algorithm, FP-CPD, to parallelize the CANDECOMP/PARAFAC (CP) decomposition of a tensor $mathcalX in mathbbR I_1 times dots times I_N $.
arXiv Detail & Related papers (2021-11-04T05:17:07Z) - Tensor Relational Algebra for Machine Learning System Design [7.764107702934616]
We present an alternative implementation abstraction called the relational tensor algebra (TRA)
TRA is a set-based algebra based on the relational algebra.
Our empirical study shows that the optimized TRA-based back-end can significantly outperform alternatives for running ML in distributed clusters.
arXiv Detail & Related papers (2020-09-01T15:51:24Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z) - PolyScientist: Automatic Loop Transformations Combined with Microkernels
for Optimization of Deep Learning Primitives [55.79741270235602]
We develop a hybrid solution to the development of deep learning kernels.
We use the advanced polyhedral technology to automatically tune the outer loops for performance.
arXiv Detail & Related papers (2020-02-06T08:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.