General Geometry-aware Weakly Supervised 3D Object Detection
- URL: http://arxiv.org/abs/2407.13748v1
- Date: Thu, 18 Jul 2024 17:52:08 GMT
- Title: General Geometry-aware Weakly Supervised 3D Object Detection
- Authors: Guowen Zhang, Junsong Fan, Liyi Chen, Zhaoxiang Zhang, Zhen Lei, Lei Zhang,
- Abstract summary: A unified framework is developed for learning 3D object detectors from RGB images and associated 2D boxes.
Experiments on KITTI and SUN-RGBD datasets demonstrate that our method yields surprisingly high-quality 3D bounding boxes with only 2D annotation.
- Score: 62.26729317523975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object detection is an indispensable component for scene understanding. However, the annotation of large-scale 3D datasets requires significant human effort. To tackle this problem, many methods adopt weakly supervised 3D object detection that estimates 3D boxes by leveraging 2D boxes and scene/class-specific priors. However, these approaches generally depend on sophisticated manual priors, which is hard to generalize to novel categories and scenes. In this paper, we are motivated to propose a general approach, which can be easily adapted to new scenes and/or classes. A unified framework is developed for learning 3D object detectors from RGB images and associated 2D boxes. In specific, we propose three general components: prior injection module to obtain general object geometric priors from LLM model, 2D space projection constraint to minimize the discrepancy between the boundaries of projected 3D boxes and their corresponding 2D boxes on the image plane, and 3D space geometry constraint to build a Point-to-Box alignment loss to further refine the pose of estimated 3D boxes. Experiments on KITTI and SUN-RGBD datasets demonstrate that our method yields surprisingly high-quality 3D bounding boxes with only 2D annotation. The source code is available at https://github.com/gwenzhang/GGA.
Related papers
- Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
We propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels.
Specifically, we design a feature-level constraint to align LiDAR and image features based on object-aware regions.
Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations.
Third, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data.
arXiv Detail & Related papers (2023-12-12T18:57:25Z) - OpenSight: A Simple Open-Vocabulary Framework for LiDAR-Based Object
Detection [41.24059083441953]
OpenSight is a more advanced 2D-3D modeling framework for LiDAR-based open-vocabulary detection.
Our method establishes state-of-the-art open-vocabulary performance on widely used 3D detection benchmarks.
arXiv Detail & Related papers (2023-12-12T07:49:30Z) - Learning 3D Scene Priors with 2D Supervision [37.79852635415233]
We propose a new method to learn 3D scene priors of layout and shape without requiring any 3D ground truth.
Our method represents a 3D scene as a latent vector, from which we can progressively decode to a sequence of objects characterized by their class categories.
Experiments on 3D-FRONT and ScanNet show that our method outperforms state of the art in single-view reconstruction.
arXiv Detail & Related papers (2022-11-25T15:03:32Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
There is a large performance gap between image-based and LiDAR-based 3D object detectors.
Our method, called Deep Stereo Geometry Network (DSGN), significantly reduces this gap.
For the first time, we provide a simple and effective one-stage stereo-based 3D detection pipeline.
arXiv Detail & Related papers (2020-01-10T11:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.