Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model
- URL: http://arxiv.org/abs/2407.14158v1
- Date: Fri, 19 Jul 2024 09:42:20 GMT
- Title: Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model
- Authors: Henry Addison, Elizabeth Kendon, Suman Ravuri, Laurence Aitchison, Peter AG Watson,
- Abstract summary: High-resolution climate simulations are valuable for understanding climate change impacts and planning adaptation measures.
We present CPMGEM, a novel application of a generative machine learning model, a diffusion model, to emulate precipitation simulations from such a high-resolution model over England and Wales at much lower cost.
- Score: 22.255982502297197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-resolution climate simulations are very valuable for understanding climate change impacts and planning adaptation measures. This has motivated use of regional climate models at sufficiently fine resolution to capture important small-scale atmospheric processes, such as convective storms. However, these regional models have very high computational costs, limiting their applicability. We present CPMGEM, a novel application of a generative machine learning model, a diffusion model, to skilfully emulate precipitation simulations from such a high-resolution model over England and Wales at much lower cost. This emulator enables stochastic generation of high-resolution (8.8km), daily-mean precipitation samples conditioned on coarse-resolution (60km) weather states from a global climate model. The output is fine enough for use in applications such as flood inundation modelling. The emulator produces precipitation predictions with realistic intensities and spatial structures and captures most of the 21st century climate change signal. We show evidence that the emulator has skill for extreme events up to and including 1-in-100 year intensities. Potential applications include producing high-resolution precipitation predictions for large-ensemble climate simulations and downscaling different climate models and climate change scenarios to better sample uncertainty in climate changes at local-scale.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
This paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale.
We employ a denoising diffusion probabilistic model conditioned on multiple LR climate variables.
Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.
arXiv Detail & Related papers (2023-12-12T09:39:52Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - DiffESM: Conditional Emulation of Earth System Models with Diffusion
Models [2.1989764549743476]
A key application of Earth System Models (ESMs) is studying extreme weather events, such as heat waves or dry spells.
We show that diffusion models can effectively emulate the trends of ESMs under previously unseen climate scenarios.
arXiv Detail & Related papers (2023-04-23T17:12:33Z) - Machine learning emulation of a local-scale UK climate model [22.374171443798037]
We show for the first time a machine learning model that is able to produce realistic samples of high-resolution rainfall.
By adding self-learnt, location-specific information to low resolution relative vorticity, quantiles and time-mean of the samples match well their counterparts from the high-resolution simulation.
arXiv Detail & Related papers (2022-11-29T11:44:35Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
We train two "loosely conditioned" Generative Adversarial Networks (GANs) that emulate daily precipitation output from a fully coupled Earth system model.
GANs are trained to producetemporal samples: 32 days of precipitation over a 64x128 regular grid discretizing the globe.
Our trained GANs can rapidly generate numerous realizations at a vastly reduced computational expense.
arXiv Detail & Related papers (2021-04-29T02:10:08Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.