Adaptive Frequency Enhancement Network for Single Image Deraining
- URL: http://arxiv.org/abs/2407.14292v1
- Date: Fri, 19 Jul 2024 13:24:05 GMT
- Title: Adaptive Frequency Enhancement Network for Single Image Deraining
- Authors: Fei Yan, Yuhong He, Keyu Chen, En Cheng, Jikang Ma,
- Abstract summary: We introduce a novel end-to-end Adaptive Frequency Enhancement Network (AFENet) specifically for single image deraining.
We employ convolutions of different scales to adaptively decompose image frequency bands, introduce a feature enhancement module, and present a novel interaction module.
This approach empowers the deraining network to eliminate diverse and complex rainy patterns and to reconstruct image details accurately.
- Score: 10.64622976628013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image deraining aims to improve the visibility of images damaged by rainy conditions, targeting the removal of degradation elements such as rain streaks, raindrops, and rain accumulation. While numerous single image deraining methods have shown promising results in image enhancement within the spatial domain, real-world rain degradation often causes uneven damage across an image's entire frequency spectrum, posing challenges for these methods in enhancing different frequency components. In this paper, we introduce a novel end-to-end Adaptive Frequency Enhancement Network (AFENet) specifically for single image deraining that adaptively enhances images across various frequencies. We employ convolutions of different scales to adaptively decompose image frequency bands, introduce a feature enhancement module to boost the features of different frequency components and present a novel interaction module for interchanging and merging information from various frequency branches. Simultaneously, we propose a feature aggregation module that efficiently and adaptively fuses features from different frequency bands, facilitating enhancements across the entire frequency spectrum. This approach empowers the deraining network to eliminate diverse and complex rainy patterns and to reconstruct image details accurately. Extensive experiments on both real and synthetic scenes demonstrate that our method not only achieves visually appealing enhancement results but also surpasses existing methods in performance.
Related papers
- AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation [99.57024606542416]
We propose an adaptive all-in-one image restoration network based on frequency mining and modulation.
Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands.
The proposed model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations.
arXiv Detail & Related papers (2024-03-21T17:58:14Z) - Dual-Path Coupled Image Deraining Network via Spatial-Frequency
Interaction [7.682978264249712]
Existing image deraining methods tend to neglect critical frequency information.
We have developed an innovative Dual-Path Coupled Deraining Network (DPCNet) that integrates information from both spatial and frequency domains.
Our proposed method not only outperforms the existing state-of-the-art deraining method but also achieves visually pleasuring results with excellent robustness on downstream vision tasks.
arXiv Detail & Related papers (2024-02-07T13:54:15Z) - Decoupling Degradation and Content Processing for Adverse Weather Image
Restoration [79.59228846484415]
Adverse weather image restoration strives to recover clear images from those affected by various weather types, such as rain, haze, and snow.
Previous techniques can handle multiple weather types within a single network, but they neglect the crucial distinction between these two processes, limiting the quality of restored images.
This work introduces a novel adverse weather image restoration method, called DDCNet, which decouples the degradation removal and content reconstruction process at the feature level based on their channel statistics.
arXiv Detail & Related papers (2023-12-08T12:26:38Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
We present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM4 problem.
By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts.
Our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands.
arXiv Detail & Related papers (2023-09-18T11:06:42Z) - Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction [18.014481087171657]
The correction of exposure-related issues is a pivotal component in enhancing the quality of images.
This paper proposes a novel methodology that leverages the frequency domain to improve and unify the handling of exposure correction tasks.
Our proposed method achieves state-of-the-art results, paving the way for more sophisticated and unified solutions in exposure correction.
arXiv Detail & Related papers (2023-09-03T14:09:14Z) - Single Image Deraining via Feature-based Deep Convolutional Neural
Network [13.39233717329633]
A single image deraining algorithm based on the combination of data-driven and model-based approaches is proposed.
Experiments show that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both qualitative and quantitative measures.
arXiv Detail & Related papers (2023-05-03T13:12:51Z) - WaveFill: A Wavelet-based Generation Network for Image Inpainting [57.012173791320855]
WaveFill is a wavelet-based inpainting network that decomposes images into multiple frequency bands.
WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally.
It applies L1 reconstruction loss to the low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts.
arXiv Detail & Related papers (2021-07-23T04:44:40Z) - Focal Frequency Loss for Image Reconstruction and Synthesis [125.7135706352493]
We show that narrowing gaps in the frequency domain can ameliorate image reconstruction and synthesis quality further.
We propose a novel focal frequency loss, which allows a model to adaptively focus on frequency components that are hard to synthesize.
arXiv Detail & Related papers (2020-12-23T17:32:04Z) - Multi-Scale Progressive Fusion Network for Single Image Deraining [84.0466298828417]
Rain streaks in the air appear in various blurring degrees and resolutions due to different distances from their positions to the camera.
Similar rain patterns are visible in a rain image as well as its multi-scale (or multi-resolution) versions.
In this work, we explore the multi-scale collaborative representation for rain streaks from the perspective of input image scales and hierarchical deep features.
arXiv Detail & Related papers (2020-03-24T17:22:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.