Enhancing Cloud-Native Resource Allocation with Probabilistic Forecasting Techniques in O-RAN
- URL: http://arxiv.org/abs/2407.14377v1
- Date: Fri, 19 Jul 2024 15:04:15 GMT
- Title: Enhancing Cloud-Native Resource Allocation with Probabilistic Forecasting Techniques in O-RAN
- Authors: Vaishnavi Kasuluru, Luis Blanco, Engin Zeydan, Albert Bel, Angelos Antonopoulos,
- Abstract summary: This paper examines the cloud-native aspects of Open Radio Access Network (O-RAN) together with the radio App (rApp) deployment options.
We show the advantages of Deep Autoregressive Recurrent network (DeepAR) over other deterministic probabilistic estimators.
- Score: 3.190069716363552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need for intelligent and efficient resource provisioning for the productive management of resources in real-world scenarios is growing with the evolution of telecommunications towards the 6G era. Technologies such as Open Radio Access Network (O-RAN) can help to build interoperable solutions for the management of complex systems. Probabilistic forecasting, in contrast to deterministic single-point estimators, can offer a different approach to resource allocation by quantifying the uncertainty of the generated predictions. This paper examines the cloud-native aspects of O-RAN together with the radio App (rApp) deployment options. The integration of probabilistic forecasting techniques as a rApp in O-RAN is also emphasized, along with case studies of real-world applications. Through a comparative analysis of forecasting models using the error metric, we show the advantages of Deep Autoregressive Recurrent network (DeepAR) over other deterministic probabilistic estimators. Furthermore, the simplicity of Simple-Feed-Forward (SFF) leads to a fast runtime but does not capture the temporal dependencies of the input data. Finally, we present some aspects related to the practical applicability of cloud-native O-RAN with probabilistic forecasting.
Related papers
- On the Impact of PRB Load Uncertainty Forecasting for Sustainable Open RAN [2.526444902695476]
The transition to sustainable Open Radio Access Network (O-RAN) architectures brings new challenges for resource management.
We propose a novel approach to characterize the Physical Resource Block (PRB) load using probabilistic forecasting techniques.
arXiv Detail & Related papers (2024-07-19T15:25:20Z) - On the use of Probabilistic Forecasting for Network Analysis in Open RAN [2.7599595576304963]
Probability forecasting techniques provide a range of possible outcomes and associated probabilities.
We propose the use of probabilistic forecasting techniques as a radio App (rApp) within the Open RAN architecture.
arXiv Detail & Related papers (2024-07-19T15:03:38Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Practical Probabilistic Model-based Deep Reinforcement Learning by
Integrating Dropout Uncertainty and Trajectory Sampling [7.179313063022576]
This paper addresses the prediction stability, prediction accuracy and control capability of the current probabilistic model-based reinforcement learning (MBRL) built on neural networks.
A novel approach dropout-based probabilistic ensembles with trajectory sampling (DPETS) is proposed.
arXiv Detail & Related papers (2023-09-20T06:39:19Z) - Probabilistic Time Series Forecasting for Adaptive Monitoring in Edge
Computing Environments [0.06999740786886537]
In this paper, we propose a sampling-based and cloud-located approach for monitoring critical infrastructures.
We evaluate our prototype implementation for the monitoring pipeline on a publicly available streaming dataset.
arXiv Detail & Related papers (2022-11-24T17:35:14Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
We argue that devising simpler methods for learning predictors on existing features is a promising direction for future research.
We introduce Domain-Adjusted Regression (DARE), a convex objective for learning a linear predictor that is provably robust under a new model of distribution shift.
Under a natural model, we prove that the DARE solution is the minimax-optimal predictor for a constrained set of test distributions.
arXiv Detail & Related papers (2022-02-14T16:42:16Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs) [0.0]
A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed.
GAN is applied to fully extract distributional information from historical data in a nonparametric and unsupervised way.
The proposed framework is then applied to supply chain optimization under demand uncertainty.
arXiv Detail & Related papers (2020-02-28T00:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.