The Extrapolation Power of Implicit Models
- URL: http://arxiv.org/abs/2407.14430v1
- Date: Fri, 19 Jul 2024 16:01:37 GMT
- Title: The Extrapolation Power of Implicit Models
- Authors: Juliette Decugis, Alicia Y. Tsai, Max Emerling, Ashwin Ganesh, Laurent El Ghaoui,
- Abstract summary: Implicit models are put to the test across various extrapolation scenarios: out-of-distribution, geographical, and temporal shifts.
Our experiments consistently demonstrate significant performance advantage with implicit models.
- Score: 2.3526338188342653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the extrapolation capabilities of implicit deep learning models in handling unobserved data, where traditional deep neural networks may falter. Implicit models, distinguished by their adaptability in layer depth and incorporation of feedback within their computational graph, are put to the test across various extrapolation scenarios: out-of-distribution, geographical, and temporal shifts. Our experiments consistently demonstrate significant performance advantage with implicit models. Unlike their non-implicit counterparts, which often rely on meticulous architectural design for each task, implicit models demonstrate the ability to learn complex model structures without the need for task-specific design, highlighting their robustness in handling unseen data.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
Deep learning is revolutionizing weather forecasting, with new data-driven models achieving accuracy on par with operational physical models for medium-term predictions.
These models often lack interpretability, making their underlying dynamics difficult to understand and explain.
This paper proposes methodologies to estimate the Koopman operator, providing a linear representation of complex nonlinear dynamics to enhance the transparency of data-driven models.
arXiv Detail & Related papers (2024-09-10T13:56:54Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Compositional Abilities Emerge Multiplicatively: Exploring Diffusion
Models on a Synthetic Task [20.749514363389878]
We study compositional generalization in conditional diffusion models in a synthetic setting.
We find that the order in which the ability to generate samples emerges is governed by the structure of the underlying data-generating process.
Our study lays a foundation for understanding capabilities and compositionality in generative models from a data-centric perspective.
arXiv Detail & Related papers (2023-10-13T18:00:59Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
Predictive coding is a message-passing framework initially developed to model information processing in the brain.
In this work, we build models that rely on the message-passing rule of predictive coding.
We show that the proposed models are comparable to standard ones in terms of performance in both inductive and transductive tasks.
arXiv Detail & Related papers (2022-12-09T03:58:22Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Gradients as Features for Deep Representation Learning [26.996104074384263]
We address the problem of deep representation learning--the efficient adaption of a pre-trained deep network to different tasks.
Our key innovation is the design of a linear model that incorporates both gradient and activation of the pre-trained network.
We present an efficient algorithm for the training and inference of our model without computing the actual gradient.
arXiv Detail & Related papers (2020-04-12T02:57:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.