Operating System And Artificial Intelligence: A Systematic Review
- URL: http://arxiv.org/abs/2407.14567v1
- Date: Fri, 19 Jul 2024 05:29:34 GMT
- Title: Operating System And Artificial Intelligence: A Systematic Review
- Authors: Yifan Zhang, Xinkui Zhao, Jianwei Yin, Lufei Zhang, Zuoning Chen,
- Abstract summary: We explore how AI-driven tools enhance OS performance, security, and efficiency, while OS advancements facilitate more sophisticated AI applications.
We analyze various AI techniques employed to optimize OS functionalities, including memory management, process scheduling, and intrusion detection.
We explore the promising prospects of Intelligent OSes, considering not only how innovative OS architectures will pave the way for groundbreaking opportunities but also how AI will significantly contribute to advancing these next-generation OSs.
- Score: 17.256378758253437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the dynamic landscape of technology, the convergence of Artificial Intelligence (AI) and Operating Systems (OS) has emerged as a pivotal arena for innovation. Our exploration focuses on the symbiotic relationship between AI and OS, emphasizing how AI-driven tools enhance OS performance, security, and efficiency, while OS advancements facilitate more sophisticated AI applications. We delve into various AI techniques employed to optimize OS functionalities, including memory management, process scheduling, and intrusion detection. Simultaneously, we analyze the role of OS in providing essential services and infrastructure that enable effective AI application execution, from resource allocation to data processing. The article also addresses challenges and future directions in this domain, emphasizing the imperative of secure and efficient AI integration within OS frameworks. By examining case studies and recent developments, our review provides a comprehensive overview of the current state of AI-OS integration, underscoring its significance in shaping the next generation of computing technologies. Finally, we explore the promising prospects of Intelligent OSes, considering not only how innovative OS architectures will pave the way for groundbreaking opportunities but also how AI will significantly contribute to advancing these next-generation OSs.
Related papers
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [56.44953602790945]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
This article offers an exhaustive tutorial for novices in NSVAD.
We showcase our latest NSVAD research in industrial IoT and smart cities, along with an end-cloud collaborative architecture for deployable NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Revolutionizing System Reliability: The Role of AI in Predictive Maintenance Strategies [0.0]
The study explores how AI, especially machine learning and neural networks, is being used to enhance predictive maintenance strategies.
The article provides insights into the effectiveness and challenges of implementing AI-driven predictive maintenance.
arXiv Detail & Related papers (2024-04-20T19:31:05Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
This paper presents the findings of a literature review on the integration of edge intelligence (EI) and socialized learning (SL)
SL is a learning paradigm predicated on social principles and behaviors, aimed at amplifying the collaborative capacity and collective intelligence of agents.
We elaborate on three integrated components: socialized architecture, socialized training, and socialized inference, analyzing their strengths and weaknesses.
arXiv Detail & Related papers (2024-04-20T11:07:29Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
The RAISA workshop will focus on research, development and application of robust artificial intelligence (AI) and machine learning (ML) systems.
Rather than studying robustness with respect to particular ML algorithms, our approach will be to explore robustness assurance at the system architecture level.
arXiv Detail & Related papers (2022-02-10T01:15:50Z) - Artificial Intelligence in the Low-Level Realm -- A Survey [0.0]
We seek methods and efforts that exploit AI approaches, specifically machine learning, in the OSes' primary responsibilities.
In other words, the main question to be answered is how AI has played/can play a role directly in improving the traditional OS kernel main tasks.
arXiv Detail & Related papers (2021-09-19T19:36:54Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.