SQLfuse: Enhancing Text-to-SQL Performance through Comprehensive LLM Synergy
- URL: http://arxiv.org/abs/2407.14568v1
- Date: Fri, 19 Jul 2024 06:01:57 GMT
- Title: SQLfuse: Enhancing Text-to-SQL Performance through Comprehensive LLM Synergy
- Authors: Tingkai Zhang, Chaoyu Chen, Cong Liao, Jun Wang, Xudong Zhao, Hang Yu, Jianchao Wang, Jianguo Li, Wenhui Shi,
- Abstract summary: This paper introduces a robust system integrating open-source Large Language Models (LLMs) with a suite of tools to enhance query accuracy and usability.
demonstrated by its leading performance on the Spider Leaderboard and deployment by Ant Group.
- Score: 24.919119901664843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-SQL conversion is a critical innovation, simplifying the transition from complex SQL to intuitive natural language queries, especially significant given SQL's prevalence in the job market across various roles. The rise of Large Language Models (LLMs) like GPT-3.5 and GPT-4 has greatly advanced this field, offering improved natural language understanding and the ability to generate nuanced SQL statements. However, the potential of open-source LLMs in Text-to-SQL applications remains underexplored, with many frameworks failing to leverage their full capabilities, particularly in handling complex database queries and incorporating feedback for iterative refinement. Addressing these limitations, this paper introduces SQLfuse, a robust system integrating open-source LLMs with a suite of tools to enhance Text-to-SQL translation's accuracy and usability. SQLfuse features four modules: schema mining, schema linking, SQL generation, and a SQL critic module, to not only generate but also continuously enhance SQL query quality. Demonstrated by its leading performance on the Spider Leaderboard and deployment by Ant Group, SQLfuse showcases the practical merits of open-source LLMs in diverse business contexts.
Related papers
- RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with Chain-of-Editions [22.493487741249716]
Large Language Models (LLMs) have been demonstrated to possess impressive capabilities in a variety of domains and tasks.
We investigate the issue of prompt design in the multi-turn text-to- task and attempt to enhance the LLMs' reasoning capacity.
arXiv Detail & Related papers (2024-05-04T16:56:14Z) - PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
Methods achieve new SOTA results on the Spider benchmark, with an execution accuracy of 87.6%.
Our methods achieve new SOTA results on the Spider benchmark, with an execution accuracy of 87.6%.
arXiv Detail & Related papers (2024-03-13T02:32:41Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
Recent Text-to-yourself methods usually suffer from significant performance degradation on "huge" databases.
We introduce MAC, a novel Text-to-yourself LLM-based multi-agent collaborative framework.
In our framework, we leverage GPT-4 as the strong backbone for all agent tasks to determine the upper bound of our framework.
We then fine-tune an open-sourced instruction-followed model,sql-Llama, by leveraging Code 7B, to accomplish all tasks as GPT-4 does.
arXiv Detail & Related papers (2023-12-18T14:40:20Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
"Prompt" is designed to improve the few-shot prompting capabilities of Text-to-LLMs.
"Prompt" outperforms previous approaches for in-context learning with few labeled data by a large margin.
We show that emphPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin.
arXiv Detail & Related papers (2023-11-06T05:24:06Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton
Retrieval [17.747079214502673]
Text-to- is a task that converts a natural language question into a structured query language () to retrieve information from a database.
In this paper, we propose an LLM-based framework for Text-to- which retrieves helpful demonstration examples to prompt LLMs.
We design a de-semanticization mechanism that extracts question skeletons, allowing us to retrieve similar examples based on their structural similarity.
arXiv Detail & Related papers (2023-04-26T06:02:01Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
We take advantage of the recently proposed question meaning representation called QDMR.
Given questions, their QDMR structures (annotated by non-experts or automatically predicted) and the answers, we are able to automatically synthesizesql queries.
Our results show that the weakly supervised models perform competitively with those trained on NL- benchmark data.
arXiv Detail & Related papers (2021-12-12T20:02:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.