WiFaKey: Generating Cryptographic Keys from Face in the Wild
- URL: http://arxiv.org/abs/2407.14804v1
- Date: Sat, 20 Jul 2024 08:31:06 GMT
- Title: WiFaKey: Generating Cryptographic Keys from Face in the Wild
- Authors: Xingbo Dong, Hui Zhang, Yen Lung Lai, Zhe Jin, Junduan Huang, Wenxiong Kang, Andrew Beng Jin Teoh,
- Abstract summary: Deriving a unique cryptographic key from biometric measurements is a challenging task due to the existing noise gap between the biometric measurements and error correction coding.
We propose a novel biometric cryptosystem named WiFaKey, for generating cryptographic keys from face in unconstrained settings.
- Score: 25.144030737846276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deriving a unique cryptographic key from biometric measurements is a challenging task due to the existing noise gap between the biometric measurements and error correction coding. Additionally, privacy and security concerns arise as biometric measurements are inherently linked to the user. Biocryptosystems represent a key branch of solutions aimed at addressing these issues. However, many existing bio-cryptosystems rely on handcrafted feature extractors and error correction codes (ECC), often leading to performance degradation. To address these challenges and improve the reliability of biometric measurements, we propose a novel biometric cryptosystem named WiFaKey, for generating cryptographic keys from face in unconstrained settings. Speciffcally, WiFaKey ffrst introduces an adaptive random masking-driven feature transformation pipeline, AdaMTrans. AdaMTrans effectively quantizes and binarizes realvalued features and incorporates an adaptive random masking scheme to align the bit error rate with error correction requirements, thereby mitigating the noise gap. Besides, WiFaKey incorporates a supervised learning-based neural decoding scheme called Neural-MS decoder, which delivers a more robust error correction performance with less iteration than non-learning decoders, thereby alleviating the performance degradation. We evaluated WiFaKey using widely adopted face feature extractors on six large unconstrained and two constrained datasets. On the LFW dataset, WiFaKey achieved an average Genuine Match Rate of 85.45% and 85.20% at a 0% False Match Rate for MagFace and AdaFace features, respectively. Our comprehensive comparative analysis shows a signiffcant performance improvement of WiFaKey. The source code of our work is available at github.com/xingbod/WiFaKey.
Related papers
- Speech privacy-preserving methods using secret key for convolutional neural network models and their robustness evaluation [5.762345156477736]
In environments where untrusted third parties provide CNN-based systems, ensuring the privacy of speech queries becomes essential.
This paper proposes encryption methods for speech queries using secret keys and a model structure that allows for encrypted queries to be accepted without decryption.
arXiv Detail & Related papers (2024-08-07T16:51:39Z) - Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.
We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - Free-text Keystroke Authentication using Transformers: A Comparative
Study of Architectures and Loss Functions [1.0152838128195467]
Keystroke biometrics is a promising approach for user identification and verification, leveraging the unique patterns in individuals' typing behavior.
We propose a Transformer-based network that employs self-attention to extract informative features from keystroke sequences.
Our model surpasses the previous state-of-the-art in free-text keystroke authentication.
arXiv Detail & Related papers (2023-10-18T00:34:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Security and Privacy Enhanced Gait Authentication with Random
Representation Learning and Digital Lockers [3.3549957463189095]
Gait data captured by inertial sensors have demonstrated promising results on user authentication.
Most existing approaches stored the enrolled gait pattern insecurely for matching with the pattern, thus, posed critical security and privacy issues.
We present a gait cryptosystem that generates from gait data the random key for user authentication, meanwhile, secures the gait pattern.
arXiv Detail & Related papers (2021-08-05T06:34:42Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
We adopt neural vocoders to spot adversarial samples for automatic speaker verification (ASV)
We find that the difference between the ASV scores for the original and re-synthesize audio is a good indicator for discrimination between genuine and adversarial samples.
Our codes will be made open-source for future works to do comparison.
arXiv Detail & Related papers (2021-07-01T08:58:16Z) - BinaryCoP: Binary Neural Network-based COVID-19 Face-Mask Wear and
Positioning Predictor on Edge Devices [63.56630165340053]
Face masks offer an effective solution in healthcare for bi-directional protection against air-borne diseases.
CNNs offer an excellent solution for face recognition and classification of correct mask wearing and positioning.
CNNs can be used at entrances to corporate buildings, airports, shopping areas, and other indoor locations, to mitigate the spread of the virus.
arXiv Detail & Related papers (2021-02-06T00:14:06Z) - Deep Face Fuzzy Vault: Implementation and Performance [5.251555525361623]
Unlinkable improved deep face fuzzy vault-based template protection scheme is presented.
It provides privacy protection of facial reference data as well as digital key derivation from face.
arXiv Detail & Related papers (2021-02-04T07:37:23Z) - Deep convolutional neural networks for face and iris presentation attack
detection: Survey and case study [0.5801044612920815]
Cross-dataset evaluation on face PAD showed better generalization than state of the art.
We propose the use of a single deep network trained to detect both face and iris attacks.
arXiv Detail & Related papers (2020-04-25T02:06:19Z) - Suppressing Uncertainties for Large-Scale Facial Expression Recognition [81.51495681011404]
This paper proposes a simple yet efficient Self-Cure Network (SCN) which suppresses the uncertainties efficiently and prevents deep networks from over-fitting uncertain facial images.
Results on public benchmarks demonstrate that our SCN outperforms current state-of-the-art methods with textbf88.14% on RAF-DB, textbf60.23% on AffectNet, and textbf89.35% on FERPlus.
arXiv Detail & Related papers (2020-02-24T17:24:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.