Hyperspectral Unmixing Under Endmember Variability: A Variational Inference Framework
- URL: http://arxiv.org/abs/2407.14899v1
- Date: Sat, 20 Jul 2024 15:16:14 GMT
- Title: Hyperspectral Unmixing Under Endmember Variability: A Variational Inference Framework
- Authors: Yuening Li, Xiao Fu, Junbin Liu, Wing-Kin Ma,
- Abstract summary: This work proposes a variational inference framework for hyperspectral unmixing in the presence of endmember variability (HU-EV)
An EV-accounted noisy linear mixture model (LMM) is considered, and the presence of outliers is also incorporated into the model.
The effectiveness of the proposed framework is demonstrated through synthetic, semi-real, and real-data experiments.
- Score: 22.114121550108344
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work proposes a variational inference (VI) framework for hyperspectral unmixing in the presence of endmember variability (HU-EV). An EV-accounted noisy linear mixture model (LMM) is considered, and the presence of outliers is also incorporated into the model. Following the marginalized maximum likelihood (MML) principle, a VI algorithmic structure is designed for probabilistic inference for HU-EV. Specifically, a patch-wise static endmember assumption is employed to exploit spatial smoothness and to try to overcome the ill-posed nature of the HU-EV problem. The design facilitates lightweight, continuous optimization-based updates under a variety of endmember priors. Some of the priors, such as the Beta prior, were previously used under computationally heavy, sampling-based probabilistic HU-EV methods. The effectiveness of the proposed framework is demonstrated through synthetic, semi-real, and real-data experiments.
Related papers
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data.
Online sequential IWAE (OSIWAE) allows for online learning of both model parameters and a Markovian recognition model for inferring latent states.
This approach is more theoretically well-founded than recently proposed online variational SMC methods.
arXiv Detail & Related papers (2024-11-04T16:12:37Z) - Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
We introduce a novel convex convex model for semi/library-based unmixing.
We demonstrate the efficacy of Alternating Methods of sparse unsupervised unmixing.
arXiv Detail & Related papers (2024-01-23T10:07:41Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
We propose Conformalized Amortized Neural Variational Inference (CANVI)
CANVI constructs conformalized predictors based on each candidate, compares the predictors using a metric known as predictive efficiency, and returns the most efficient predictor.
We prove lower bounds on the predictive efficiency of the regions produced by CANVI and explore how the quality of a posterior approximation relates to the predictive efficiency of prediction regions based on that approximation.
arXiv Detail & Related papers (2023-05-23T17:24:04Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Robust Expected Information Gain for Optimal Bayesian Experimental
Design Using Ambiguity Sets [0.0]
We define and analyze emphrobust expected information gain (REIG)
REIG is a modification of the objective in EIG by minimizing an affine relaxation of EIG over an ambiguity set of perturbed distributions.
We show that, when combined with a sampling-based approach to estimating EIG, REIG corresponds to a log-sum-exp' stabilization of the samples used to estimate EIG.
arXiv Detail & Related papers (2022-05-20T01:07:41Z) - Variational Learning for the Inverted Beta-Liouville Mixture Model and
Its Application to Text Categorization [1.4174475093445236]
finite invert Beta-Liouville mixture model (IBLMM) has recently gained some attention due to its positive data modeling capability.
New function is proposed to replace the original variational object function in order to avoid intractable moment computation.
arXiv Detail & Related papers (2021-12-29T03:03:44Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
We propose pseudo-spherical contrastive divergence (PS-CD) to generalize maximum learning likelihood of energy-based models.
PS-CD avoids the intractable partition function and provides a generalized family of learning objectives.
arXiv Detail & Related papers (2021-11-01T09:17:15Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
Posterior-Aided Regularization (PAR) is applicable to learning the density estimator, regardless of the model structure.
We provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network.
arXiv Detail & Related papers (2021-02-15T16:59:30Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.