SNNGX: Securing Spiking Neural Networks with Genetic XOR Encryption on RRAM-based Neuromorphic Accelerator
- URL: http://arxiv.org/abs/2407.15152v2
- Date: Mon, 26 Aug 2024 10:20:30 GMT
- Title: SNNGX: Securing Spiking Neural Networks with Genetic XOR Encryption on RRAM-based Neuromorphic Accelerator
- Authors: Kwunhang Wong, Songqi Wang, Wei Huang, Xinyuan Zhang, Yangu He, Karl M. H. Lai, Yuzhong Jiao, Ning Lin, Xiaojuan Qi, Xiaoming Chen, Zhongrui Wang,
- Abstract summary: Spiking Neural Networks (SNNs), characterized by spike sparsity, are growing tremendous attention over intellectual edge devices and critical bio-medical applications.
However, there is a considerable risk from malicious attempts to extract white-box information from SNNs.
We present a novel secure software- hardware co-designed RRAM-based neuromorphic accelerator for protecting the IP of SNNs.
- Score: 34.474841993360855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biologically plausible Spiking Neural Networks (SNNs), characterized by spike sparsity, are growing tremendous attention over intellectual edge devices and critical bio-medical applications as compared to artificial neural networks (ANNs). However, there is a considerable risk from malicious attempts to extract white-box information (i.e., weights) from SNNs, as attackers could exploit well-trained SNNs for profit and white-box adversarial concerns. There is a dire need for intellectual property (IP) protective measures. In this paper, we present a novel secure software-hardware co-designed RRAM-based neuromorphic accelerator for protecting the IP of SNNs. Software-wise, we design a tailored genetic algorithm with classic XOR encryption to target the least number of weights that need encryption. From a hardware perspective, we develop a low-energy decryption module, meticulously designed to provide zero decryption latency. Extensive results from various datasets, including NMNIST, DVSGesture, EEGMMIDB, Braille Letter, and SHD, demonstrate that our proposed method effectively secures SNNs by encrypting a minimal fraction of stealthy weights, only 0.00005% to 0.016% weight bits. Additionally, it achieves a substantial reduction in energy consumption, ranging from x59 to x6780, and significantly lowers decryption latency, ranging from x175 to x4250. Moreover, our method requires as little as one sample per class in dataset for encryption and addresses hessian/gradient-based search insensitive problems. This strategy offers a highly efficient and flexible solution for securing SNNs in diverse applications.
Related papers
- Decoding finger velocity from cortical spike trains with recurrent spiking neural networks [6.404492073110551]
Invasive brain-machine interfaces (BMIs) can significantly improve the life quality of motor-impaired patients.
BMIs must meet strict latency and energy constraints while providing reliable decoding performance.
We trained RSNNs to decode finger velocity from cortical spike trains of two macaque monkeys.
arXiv Detail & Related papers (2024-09-03T10:15:33Z) - RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
Spiking Neural Networks (SNNs) have received widespread attention due to their unique neuronal dynamics and low-power nature.
Previous research empirically shows that SNNs with Poisson coding are more robust than Artificial Neural Networks (ANNs) on small-scale datasets.
This work theoretically demonstrates that SNN's inherent adversarial robustness stems from its Poisson coding.
arXiv Detail & Related papers (2024-07-29T15:26:15Z) - Watermarking Neuromorphic Brains: Intellectual Property Protection in Spiking Neural Networks [3.4673556247932225]
spiking neural networks (SNNs) gain traction in deploying neuromorphic computing solutions.
Without adequate safeguards, proprietary SNN architectures are at risk of theft, replication, or misuse.
We pioneer an investigation into adapting two prominent watermarking approaches, namely, fingerprint-based and backdoor-based mechanisms.
arXiv Detail & Related papers (2024-05-07T06:42:30Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects
of Discrete Input Encoding and Non-Linear Activations [9.092733355328251]
Spiking Neural Network (SNN) is a potential candidate for inherent robustness against adversarial attacks.
In this work, we demonstrate that adversarial accuracy of SNNs under gradient-based attacks is higher than their non-spiking counterparts.
arXiv Detail & Related papers (2020-03-23T17:20:24Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.