Variational Potential Flow: A Novel Probabilistic Framework for Energy-Based Generative Modelling
- URL: http://arxiv.org/abs/2407.15238v1
- Date: Sun, 21 Jul 2024 18:08:12 GMT
- Title: Variational Potential Flow: A Novel Probabilistic Framework for Energy-Based Generative Modelling
- Authors: Junn Yong Loo, Michelle Adeline, Arghya Pal, Vishnu Monn Baskaran, Chee-Ming Ting, Raphael C. -W. Phan,
- Abstract summary: We present a novel energy-based generative framework, Variational Potential Flow (VAPO)
VAPO aims to learn a potential energy function whose gradient (flow) guides the prior samples, so that their density evolution closely follows an approximate data likelihood homotopy.
Images can be generated after training the potential energy, by initializing the samples from Gaussian prior and solving the ODE governing the potential flow on a fixed time interval.
- Score: 10.926841288976684
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Energy based models (EBMs) are appealing for their generality and simplicity in data likelihood modeling, but have conventionally been difficult to train due to the unstable and time-consuming implicit MCMC sampling during contrastive divergence training. In this paper, we present a novel energy-based generative framework, Variational Potential Flow (VAPO), that entirely dispenses with implicit MCMC sampling and does not rely on complementary latent models or cooperative training. The VAPO framework aims to learn a potential energy function whose gradient (flow) guides the prior samples, so that their density evolution closely follows an approximate data likelihood homotopy. An energy loss function is then formulated to minimize the Kullback-Leibler divergence between density evolution of the flow-driven prior and the data likelihood homotopy. Images can be generated after training the potential energy, by initializing the samples from Gaussian prior and solving the ODE governing the potential flow on a fixed time interval using generic ODE solvers. Experiment results show that the proposed VAPO framework is capable of generating realistic images on various image datasets. In particular, our proposed framework achieves competitive FID scores for unconditional image generation on the CIFAR-10 and CelebA datasets.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Image Generation with Multimodal Priors using Denoising Diffusion
Probabilistic Models [54.1843419649895]
A major challenge in using generative models to accomplish this task is the lack of paired data containing all modalities and corresponding outputs.
We propose a solution based on a denoising diffusion probabilistic synthesis models to generate images under multi-model priors.
arXiv Detail & Related papers (2022-06-10T12:23:05Z) - A Tale of Two Flows: Cooperative Learning of Langevin Flow and
Normalizing Flow Toward Energy-Based Model [43.53802699867521]
We study the cooperative learning of two generative flow models, in which the two models are iteratively updated based on jointly synthesized examples.
We show that the trained CoopFlow is capable of realistic images, reconstructing images, and interpolating between images.
arXiv Detail & Related papers (2022-05-13T23:12:38Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
We propose a novel vision transformer with latent variables following an informative energy-based prior for salient object detection.
Both the vision transformer network and the energy-based prior model are jointly trained via Markov chain Monte Carlo-based maximum likelihood estimation.
With the generative vision transformer, we can easily obtain a pixel-wise uncertainty map from an image, which indicates the model confidence in predicting saliency from the image.
arXiv Detail & Related papers (2021-12-27T06:04:33Z) - EBMs Trained with Maximum Likelihood are Generator Models Trained with a
Self-adverserial Loss [6.445605125467574]
We replace Langevin dynamics with deterministic solutions of the associated gradient descent ODE.
We show that reintroducing the noise in the dynamics does not lead to a qualitative change in the behavior.
We thus show that EBM training is effectively a self-adversarial procedure rather than maximum likelihood estimation.
arXiv Detail & Related papers (2021-02-23T15:34:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.