New Rules for Causal Identification with Background Knowledge
- URL: http://arxiv.org/abs/2407.15259v1
- Date: Sun, 21 Jul 2024 20:21:21 GMT
- Title: New Rules for Causal Identification with Background Knowledge
- Authors: Tian-Zuo Wang, Lue Tao, Zhi-Hua Zhou,
- Abstract summary: We propose two novel rules for incorporating BK, which offer a new perspective to the open problem.
We show that these rules are applicable in some typical causality tasks, such as determining the set of possible causal effects with observational data.
- Score: 59.733125324672656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying causal relations is crucial for a variety of downstream tasks. In additional to observational data, background knowledge (BK), which could be attained from human expertise or experiments, is usually introduced for uncovering causal relations. This raises an open problem that in the presence of latent variables, what causal relations are identifiable from observational data and BK. In this paper, we propose two novel rules for incorporating BK, which offer a new perspective to the open problem. In addition, we show that these rules are applicable in some typical causality tasks, such as determining the set of possible causal effects with observational data. Our rule-based approach enhances the state-of-the-art method by circumventing a process of enumerating block sets that would otherwise take exponential complexity.
Related papers
- Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
Causal Discovery is a technique that tackles the challenge by analyzing the statistical properties of the constituent variables.
We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning.
In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures.
arXiv Detail & Related papers (2024-08-01T09:11:08Z) - Local-Data-Hiding and Causal Inseparability: Probing Indefinite Causal Structures with Cryptographic Primitives [0.0]
Recent studies suggest the possibility of indefiniteness in causal structure, which emerges as a novel information primitive.
We show that agents embedded in an indefinite causal structure can outperform their counterparts operating in a definite causal background.
We report an intriguing super-activation phenomenon, where two quantum processes, each individually not useful for the LBH task, become useful when used together.
arXiv Detail & Related papers (2024-07-30T04:54:03Z) - Learning latent causal relationships in multiple time series [0.0]
In many systems, the causal relations are embedded in a latent space that is expressed in the observed data as a linear mixture.
A technique for blindly identifying the latent sources is presented.
The proposed technique is unsupervised and can be readily applied to any multiple time series to shed light on the causal relationships underlying the data.
arXiv Detail & Related papers (2022-03-21T00:20:06Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
Causal inference is the process of capturing cause-effect relationship among variables.
We propose a novel Graph-based Causal Inference framework, which builds causal graphs from fact descriptions without much human involvement.
We observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
arXiv Detail & Related papers (2021-04-19T16:13:10Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.