Efficient Retrieval with Learned Similarities
- URL: http://arxiv.org/abs/2407.15462v1
- Date: Mon, 22 Jul 2024 08:19:34 GMT
- Title: Efficient Retrieval with Learned Similarities
- Authors: Bailu Ding, Jiaqi Zhai,
- Abstract summary: State-of-the-art retrieval algorithms have migrated to learned similarities.
We show that Mixture-of-Logits (MoL) is a universal approximator, and can express all learned similarity functions.
MoL sets new state-of-the-art results on recommendation retrieval tasks, and our approximate top-k retrieval with learned similarities outperforms baselines by up to two orders of magnitude in latency.
- Score: 2.729516456192901
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retrieval plays a fundamental role in recommendation systems, search, and natural language processing by efficiently finding relevant items from a large corpus given a query. Dot products have been widely used as the similarity function in such retrieval tasks, thanks to Maximum Inner Product Search (MIPS) that enabled efficient retrieval based on dot products. However, state-of-the-art retrieval algorithms have migrated to learned similarities. Such algorithms vary in form; the queries can be represented with multiple embeddings, complex neural networks can be deployed, the item ids can be decoded directly from queries using beam search, and multiple approaches can be combined in hybrid solutions. Unfortunately, we lack efficient solutions for retrieval in these state-of-the-art setups. Our work investigates techniques for approximate nearest neighbor search with learned similarity functions. We first prove that Mixture-of-Logits (MoL) is a universal approximator, and can express all learned similarity functions. We next propose techniques to retrieve the approximate top K results using MoL with a tight bound. We finally compare our techniques with existing approaches, showing that MoL sets new state-of-the-art results on recommendation retrieval tasks, and our approximate top-k retrieval with learned similarities outperforms baselines by up to two orders of magnitude in latency, while achieving > .99 recall rate of exact algorithms.
Related papers
- pEBR: A Probabilistic Approach to Embedding Based Retrieval [4.8338111302871525]
Embedding retrieval aims to learn a shared semantic representation space for both queries and items.
In current industrial practice, retrieval systems typically retrieve a fixed number of items for different queries.
arXiv Detail & Related papers (2024-10-25T07:14:12Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
'LADR' (Lexically-Accelerated Dense Retrieval) is a simple-yet-effective approach that improves the efficiency of existing dense retrieval models.
LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
arXiv Detail & Related papers (2023-07-31T15:44:26Z) - Revisiting Neural Retrieval on Accelerators [20.415728886298915]
A key component of retrieval is to model (user, item) similarity.
Despite its popularity, dot products cannot capture complex user-item interactions, which are multifaceted and likely high rank.
We propose textitmixture of logits (MoL), which models (user, item) similarity as an adaptive composition of elementary similarity functions.
arXiv Detail & Related papers (2023-06-06T22:08:42Z) - Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
We show that large efficiency gains can be obtained by employing a fast unified functional hash.
Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently.
We show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery.
arXiv Detail & Related papers (2023-02-10T18:50:37Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Approximate Nearest Neighbor Search under Neural Similarity Metric for
Large-Scale Recommendation [20.42993976179691]
We propose a novel method to extend ANN search to arbitrary matching functions.
Our main idea is to perform a greedy walk with a matching function in a similarity graph constructed from all items.
The proposed method has been fully deployed in the Taobao display advertising platform and brings a considerable advertising revenue increase.
arXiv Detail & Related papers (2022-02-14T07:55:57Z) - Multidimensional Assignment Problem for multipartite entity resolution [69.48568967931608]
Multipartite entity resolution aims at integrating records from multiple datasets into one entity.
We apply two procedures, a Greedy algorithm and a large scale neighborhood search, to solve the assignment problem.
We find evidence that design-based multi-start can be more efficient as the size of databases grow large.
arXiv Detail & Related papers (2021-12-06T20:34:55Z) - Recall@k Surrogate Loss with Large Batches and Similarity Mixup [62.67458021725227]
Direct optimization, by gradient descent, of an evaluation metric is not possible when it is non-differentiable.
In this work, a differentiable surrogate loss for the recall is proposed.
The proposed method achieves state-of-the-art results in several image retrieval benchmarks.
arXiv Detail & Related papers (2021-08-25T11:09:11Z) - LSF-Join: Locality Sensitive Filtering for Distributed All-Pairs Set
Similarity Under Skew [58.21885402826496]
All-pairs set similarity is a widely used data mining task, even for large and high-dimensional datasets.
We present a new distributed algorithm, LSF-Join, for approximate all-pairs set similarity.
We show that LSF-Join efficiently finds most close pairs, even for small similarity thresholds and for skewed input sets.
arXiv Detail & Related papers (2020-03-06T00:06:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.