A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism
- URL: http://arxiv.org/abs/2407.15600v1
- Date: Mon, 22 Jul 2024 12:46:22 GMT
- Title: A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism
- Authors: Yu Xue, Chenchen Zhu, MengChu Zhou, Mohamed Wahib, Moncef Gabbouj,
- Abstract summary: Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
- Score: 58.855741970337675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks. But NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process, which requires a lot of computing resources and time. In order to improve the efficiency of NAS, a series of methods have been proposed to reduce the evaluation time of neural architectures. However, they are not efficient enough and still only focus on the accuracy of architectures. In addition to the classification accuracy, more efficient and smaller network architectures are required in real-world applications. To address the above problems, we propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism. In the SMEM-NAS, a surrogate model is constructed based on pairwise compari-son relations to predict the accuracy ranking of architectures, rather than the absolute accuracy. Moreover, two populations cooperate with each other in the search process, i.e., a main population guides the evolution, while a vice population expands the diversity. Our method aims to provide high-performance models that take into account multiple optimization objectives. We conduct a series of experiments on the CIFAR-10, CIFAR-100 and ImageNet datasets to verify its effectiveness. With only a single GPU searching for 0.17 days, competitive architectures can be found by SMEM-NAS which achieves 78.91% accuracy with the MAdds of 570M on the ImageNet. This work makes a significant advance in the important field of NAS.
Related papers
- Multi-Objective Neural Architecture Search by Learning Search Space Partitions [8.4553113915588]
We implement a novel meta-algorithm called LaMOO on neural architecture search (NAS) tasks.
LaMOO speedups the search process by learning a model from observed samples to partition the search space and then focusing on promising regions.
For real-world tasks, LaMOO achieves 97.36% accuracy with only 1.62M #Params on CIFAR10 in only 600 search samples.
arXiv Detail & Related papers (2024-06-01T03:51:34Z) - DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices.
One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS.
We introduce Discrepant Child-Parent Neural Architecture Search (DCP-NAS) to efficiently search 1-bit CNNs.
arXiv Detail & Related papers (2023-06-27T11:28:29Z) - Efficient Architecture Search for Diverse Tasks [29.83517145790238]
We study neural architecture search (NAS) for efficiently solving diverse problems.
We introduce DASH, a differentiable NAS algorithm that computes the mixture-of-operations using the Fourier diagonalization of convolution.
We evaluate DASH-Bench-360, a suite of ten tasks designed for NAS benchmarking in diverse domains.
arXiv Detail & Related papers (2022-04-15T17:21:27Z) - BossNAS: Exploring Hybrid CNN-transformers with Block-wisely
Self-supervised Neural Architecture Search [100.28980854978768]
We present Block-wisely Self-supervised Neural Architecture Search (BossNAS)
We factorize the search space into blocks and utilize a novel self-supervised training scheme, named ensemble bootstrapping, to train each block separately.
We also present HyTra search space, a fabric-like hybrid CNN-transformer search space with searchable down-sampling positions.
arXiv Detail & Related papers (2021-03-23T10:05:58Z) - Evolutionary Neural Architecture Search Supporting Approximate
Multipliers [0.5414308305392761]
We propose a multi-objective NAS method based on Cartesian genetic programming for evolving convolutional neural networks (CNN)
The most suitable approximate multipliers are automatically selected from a library of approximate multipliers.
Evolved CNNs are compared with common human-created CNNs of a similar complexity on the CIFAR-10 benchmark problem.
arXiv Detail & Related papers (2021-01-28T09:26:03Z) - Neural Architecture Search with an Efficient Multiobjective Evolutionary
Framework [0.0]
We propose EMONAS, an Efficient MultiObjective Neural Architecture Search framework.
EMONAS is composed of a search space that considers both the macro- and micro-structure of the architecture.
It is evaluated on the task of 3D cardiac segmentation from the MICCAI ACDC challenge.
arXiv Detail & Related papers (2020-11-09T14:41:10Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
We propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning.
In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs.
With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints.
arXiv Detail & Related papers (2019-05-28T06:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.