Reinforcement Learning Meets Visual Odometry
- URL: http://arxiv.org/abs/2407.15626v1
- Date: Mon, 22 Jul 2024 13:37:55 GMT
- Title: Reinforcement Learning Meets Visual Odometry
- Authors: Nico Messikommer, Giovanni Cioffi, Mathias Gehrig, Davide Scaramuzza,
- Abstract summary: We reframing Visual Odometry (VO) as a decision-making task and applying Reinforcement Learning (RL) to adapt the VO process dynamically.
Our approach introduces a neural network, operating as an agent within the VO pipeline, to make decisions such as sequential and grid-size selection.
Our method minimizes reliance on choices using a reward function based on pose error, runtime, and other metrics to guide the system.
- Score: 22.34784125002176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual Odometry (VO) is essential to downstream mobile robotics and augmented/virtual reality tasks. Despite recent advances, existing VO methods still rely on heuristic design choices that require several weeks of hyperparameter tuning by human experts, hindering generalizability and robustness. We address these challenges by reframing VO as a sequential decision-making task and applying Reinforcement Learning (RL) to adapt the VO process dynamically. Our approach introduces a neural network, operating as an agent within the VO pipeline, to make decisions such as keyframe and grid-size selection based on real-time conditions. Our method minimizes reliance on heuristic choices using a reward function based on pose error, runtime, and other metrics to guide the system. Our RL framework treats the VO system and the image sequence as an environment, with the agent receiving observations from keypoints, map statistics, and prior poses. Experimental results using classical VO methods and public benchmarks demonstrate improvements in accuracy and robustness, validating the generalizability of our RL-enhanced VO approach to different scenarios. We believe this paradigm shift advances VO technology by eliminating the need for time-intensive parameter tuning of heuristics.
Related papers
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
Value-based reinforcement learning can learn effective policies for a wide range of multi-turn problems.
Current value-based RL methods have proven particularly challenging to scale to the setting of large language models.
We propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning problem.
arXiv Detail & Related papers (2024-11-07T21:36:52Z) - MPVO: Motion-Prior based Visual Odometry for PointGoal Navigation [3.9974562667271507]
Visual odometry (VO) is essential for enabling accurate point-goal navigation of embodied agents in indoor environments.
Recent deep-learned VO methods show robust performance but suffer from sample inefficiency during training.
We propose a robust and sample-efficient VO pipeline based on motion priors available while an agent is navigating an environment.
arXiv Detail & Related papers (2024-11-07T15:36:49Z) - Intrinsic Dynamics-Driven Generalizable Scene Representations for Vision-Oriented Decision-Making Applications [0.21051221444478305]
How to improve the ability of scene representation is a key issue in vision-oriented decision-making applications.
We propose an intrinsic dynamics-driven representation learning method with sequence models in visual reinforcement learning.
arXiv Detail & Related papers (2024-05-30T06:31:03Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Brain-Inspired Visual Odometry: Balancing Speed and Interpretability
through a System of Systems Approach [0.0]
This study addresses the challenge of balancing speed and accuracy in visual odometry (VO) systems.
Traditional VO systems often face a trade-off between computational speed and the precision of pose estimation.
Our system is unique in its approach to handle each degree of freedom independently within the fully connected network (FCN)
arXiv Detail & Related papers (2023-12-20T16:23:48Z) - Online Learning of Wheel Odometry Correction for Mobile Robots with
Attention-based Neural Network [63.8376359764052]
Modern robotic platforms need a reliable localization system to operate daily beside humans.
Simple pose estimation algorithms based on filtered wheel and inertial odometry often fail in the presence of abrupt kinematic changes and wheel slips.
We propose an innovative online learning approach for wheel odometry correction, paving the way for a robust multi-source localization system.
arXiv Detail & Related papers (2023-03-21T10:30:31Z) - Environment Transformer and Policy Optimization for Model-Based Offline
Reinforcement Learning [25.684201757101267]
We propose an uncertainty-aware sequence modeling architecture called Environment Transformer.
Benefiting from the accurate modeling of the transition dynamics and reward function, Environment Transformer can be combined with arbitrary planning, dynamics programming, or policy optimization algorithms for offline RL.
arXiv Detail & Related papers (2023-03-07T11:26:09Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users.
To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited.
arXiv Detail & Related papers (2021-06-03T08:35:10Z) - Self-Supervised Deep Visual Odometry with Online Adaptation [35.90781281010656]
We propose an online meta-learning algorithm to enable VO networks to continuously adapt to new environments in a self-supervised manner.
Our method consistently outperforms state-of-the-art self-supervised VO baselines considerably.
arXiv Detail & Related papers (2020-05-13T03:39:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.