SoftCVI: Contrastive variational inference with self-generated soft labels
- URL: http://arxiv.org/abs/2407.15687v2
- Date: Tue, 10 Sep 2024 18:46:35 GMT
- Title: SoftCVI: Contrastive variational inference with self-generated soft labels
- Authors: Daniel Ward, Mark Beaumont, Matteo Fasiolo,
- Abstract summary: Variational inference and Markov chain Monte Carlo methods are the predominant tools for this task.
We introduce Soft Contrastive Variational Inference (SoftCVI), which allows a family of variational objectives to be derived through a contrastive estimation framework.
We find that SoftCVI can be used to form objectives which are stable to train and mass-covering, frequently outperforming inference with other variational approaches.
- Score: 2.5398014196797614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating a distribution given access to its unnormalized density is pivotal in Bayesian inference, where the posterior is generally known only up to an unknown normalizing constant. Variational inference and Markov chain Monte Carlo methods are the predominant tools for this task; however, both are often challenging to apply reliably, particularly when the posterior has complex geometry. Here, we introduce Soft Contrastive Variational Inference (SoftCVI), which allows a family of variational objectives to be derived through a contrastive estimation framework. The approach parameterizes a classifier in terms of a variational distribution, reframing the inference task as a contrastive estimation problem aiming to identify a single true posterior sample among a set of samples. Despite this framing, we do not require positive or negative samples, but rather learn by sampling the variational distribution and computing ground truth soft classification labels from the unnormalized posterior itself. The objectives have zero variance gradient when the variational approximation is exact, without the need for specialized gradient estimators. We empirically investigate the performance on a variety of Bayesian inference tasks, using both simple (e.g. normal) and expressive (normalizing flow) variational distributions. We find that SoftCVI can be used to form objectives which are stable to train and mass-covering, frequently outperforming inference with other variational approaches.
Related papers
- Enhancing Anomaly Detection Generalization through Knowledge Exposure: The Dual Effects of Augmentation [9.740752855568202]
Anomaly detection involves identifying instances within a dataset that deviates from the norm and occur infrequently.
Current benchmarks tend to favor methods biased towards low diversity in normal data, which does not align with real-world scenarios.
We propose new testing protocols and a novel method called Knowledge Exposure (KE), which integrates external knowledge to comprehend concept dynamics.
arXiv Detail & Related papers (2024-06-15T12:37:36Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Reliable amortized variational inference with physics-based latent
distribution correction [0.4588028371034407]
A neural network is trained to approximate the posterior distribution over existing pairs of model and data.
The accuracy of this approach relies on the availability of high-fidelity training data.
We show that our correction step improves the robustness of amortized variational inference with respect to changes in number of source experiments, noise variance, and shifts in the prior distribution.
arXiv Detail & Related papers (2022-07-24T02:38:54Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
We propose a measure of a classifier's output invariance in a local transformation neighborhood.
Our measure is simple to calculate, does not depend on the test point's true label, and can be applied even in out-of-domain (OOD) settings.
In experiments on benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our measure and actual OOD generalization.
arXiv Detail & Related papers (2022-07-05T14:55:16Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
Regularizing distance between embeddings/representations of original samples and augmented counterparts is a popular technique for improving robustness of neural networks.
In this paper, we explore these various regularization choices, seeking to provide a general understanding of how we should regularize the embeddings.
We show that the generic approach we identified (squared $ell$ regularized augmentation) outperforms several recent methods, which are each specially designed for one task.
arXiv Detail & Related papers (2020-11-25T22:40:09Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
This paper defines the variation predictability of latent disentangled representations.
Within an adversarial generation process, we encourage variation predictability by maximizing the mutual information between latent variations and corresponding image pairs.
We develop an evaluation metric that does not rely on the ground-truth generative factors to measure the disentanglement of latent representations.
arXiv Detail & Related papers (2020-07-25T08:54:26Z) - Reliable Categorical Variational Inference with Mixture of Discrete
Normalizing Flows [10.406659081400354]
Variational approximations are increasingly based on gradient-based optimization of expectations estimated by sampling.
Continuous relaxations, such as the Gumbel-Softmax for categorical distribution, enable gradient-based optimization, but do not define a valid probability mass for discrete observations.
In practice, selecting the amount of relaxation is difficult and one needs to optimize an objective that does not align with the desired one.
arXiv Detail & Related papers (2020-06-28T10:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.