An instructional lab apparatus for quantum experiments with single nitrogen-vacancy centers in diamond
- URL: http://arxiv.org/abs/2407.15759v1
- Date: Mon, 22 Jul 2024 16:10:59 GMT
- Title: An instructional lab apparatus for quantum experiments with single nitrogen-vacancy centers in diamond
- Authors: Zhiyang Yuan, Sounak Mukherjee, Aedan Gardill, Jeff D. Thompson, Shimon Kolkowitz, Nathalie P. de Leon,
- Abstract summary: We present an experimental apparatus for performing quantum experiments with single nitrogen-vacancy (NV) centers in diamond.
We describe the basic physics of the NV center and give examples of potential experiments that can be performed with this apparatus.
The apparatus described here enables students to write their own experimental control and data analysis software from scratch all within a single semester of a typical lab course.
- Score: 0.14993626998062629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hands-on experimental experience with quantum systems in the undergraduate physics curriculum provides students with a deeper understanding of quantum physics and equips them for the fast-growing quantum science industry. Here we present an experimental apparatus for performing quantum experiments with single nitrogen-vacancy (NV) centers in diamond. This apparatus is capable of basic experiments such as single-qubit initialization, rotation, and measurement, as well as more advanced experiments investigating electron-nuclear spin interactions. We describe the basic physics of the NV center and give examples of potential experiments that can be performed with this apparatus. We also discuss the options and inherent trade-offs associated with the choice of diamond samples and hardware. The apparatus described here enables students to write their own experimental control and data analysis software from scratch all within a single semester of a typical lab course, as well as to inspect the optical components and inner workings of the apparatus. We hope that this work can serve as a standalone resource for any institution that would like to integrate a quantum instructional lab into its undergraduate physics and engineering curriculum.
Related papers
- Measuring Wigner functions of quantum states of light in the
undergraduate laboratory [49.1574468325115]
We present an educational activity aimed at measuring the Wigner distribution functions of quantum states of light.
The project was conceived by students from various courses within the physics undergraduate curriculum at the Universidad de los Andes in Bogot'a, Colombia.
The activity is now part of the course syllabus and its virtual component has proven to be highly valuable for the implementation of distance learning in quantum optics.
arXiv Detail & Related papers (2023-10-26T16:17:54Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Learning Interpretable Representations of Entanglement in Quantum Optics
Experiments using Deep Generative Models [1.3016298207860975]
We present the first deep generative model of quantum optics experiments where a variational autoencoder is trained on a dataset of experimental setups.
We show the QOVAE is able to generate novel experiments for highly entangled quantum states with specific distributions that match its training data.
The results demonstrate how we can successfully use and understand the internal representations of deep generative models in a complex scientific domain.
arXiv Detail & Related papers (2021-09-06T13:52:37Z) - Experimental progress on quantum coherence: detection, quantification,
and manipulation [55.41644538483948]
Recently there has been significant interest in the characterization of quantum coherence as a resource.
We discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems.
We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements.
arXiv Detail & Related papers (2021-05-14T14:30:47Z) - Spin-mechanics with nitrogen-vacancy centers and trapped particles [0.0]
We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state.
Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that will enable these systems to unleash their full potential.
arXiv Detail & Related papers (2021-04-20T20:43:24Z) - A compact ion-trap quantum computing demonstrator [1.1054689759565857]
We present a 19-inch rack quantum computing demonstrator based on $40textrmCa+$ optical qubits in a linear Paul trap.
We describe the automation and remote access components of the quantum computing stack.
We produce maximally-entangled Greenberger-Horne-Zeilinger states with up to 24 ions without the use of post-selection or error mitigation techniques.
arXiv Detail & Related papers (2021-01-27T13:40:11Z) - Semi-device-independent certification of independent quantum state and
measurement devices [0.0]
Certifying that quantum devices behave as intended is crucial for quantum information science.
The experimenter assumes the independence of the devices and knowledge of the unambiguous space dimension.
The presented methods can readily be implemented in experiments.
arXiv Detail & Related papers (2020-03-08T22:15:06Z) - Learning models of quantum systems from experiments [0.2740360306052669]
Hamiltonian models underpin the study and analysis of physical and chemical processes throughout science and industry.
We propose and demonstrate an approach to retrieving a Hamiltonian model from experiments, using unsupervised machine learning.
arXiv Detail & Related papers (2020-02-14T18:37:50Z) - Reservoir engineering with arbitrary temperatures for spin systems and
quantum thermal machine with maximum efficiency [50.591267188664666]
Reservoir engineering is an important tool for quantum information science and quantum thermodynamics.
We employ this technique to engineer reservoirs with arbitrary (effective) negative and positive temperatures for a single spin system.
arXiv Detail & Related papers (2020-01-28T00:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.