Breaking the Global North Stereotype: A Global South-centric Benchmark Dataset for Auditing and Mitigating Biases in Facial Recognition Systems
- URL: http://arxiv.org/abs/2407.15810v2
- Date: Fri, 26 Jul 2024 13:57:32 GMT
- Title: Breaking the Global North Stereotype: A Global South-centric Benchmark Dataset for Auditing and Mitigating Biases in Facial Recognition Systems
- Authors: Siddharth D Jaiswal, Animesh Ganai, Abhisek Dash, Saptarshi Ghosh, Animesh Mukherjee,
- Abstract summary: We propose a new face dataset composed of 6,579 unique male and female sportspersons from eight countries around the world.
More than 50% of the dataset comprises individuals from the Global South countries and is demographically diverse.
To aid adversarial audits and robust model training, each image has four adversarial variants, totaling over 40,000 images.
- Score: 7.790132091010725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Facial Recognition Systems (FRSs) are being developed and deployed globally at unprecedented rates. Most platforms are designed in a limited set of countries but deployed in worldwide, without adequate checkpoints. This is especially problematic for Global South countries which lack strong legislation to safeguard persons facing disparate performance of these systems. A combination of unavailability of datasets, lack of understanding of FRS functionality and low-resource bias mitigation measures accentuate the problem. In this work, we propose a new face dataset composed of 6,579 unique male and female sportspersons from eight countries around the world. More than 50% of the dataset comprises individuals from the Global South countries and is demographically diverse. To aid adversarial audits and robust model training, each image has four adversarial variants, totaling over 40,000 images. We also benchmark five popular FRSs, both commercial and open-source, for the task of gender prediction (and country prediction for one of the open-source models as an example of red-teaming). Experiments on industrial FRSs reveal accuracies ranging from 98.2%--38.1%, with a large disparity between males and females in the Global South (max difference of 38.5%). Biases are also observed in all FRSs between females of the Global North and South (max difference of ~50%). Grad-CAM analysis identifies the nose, forehead and mouth as the regions of interest on one of the open-source FRSs. Utilizing this insight, we design simple, low-resource bias mitigation solutions using few-shot and novel contrastive learning techniques significantly improving the accuracy with disparity between males and females reducing from 50% to 1.5% in one of the settings. In the red-teaming experiment with the open-source Deepface model, contrastive learning proves more effective than simple fine-tuning.
Related papers
- GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but have also been observed to magnify societal biases.
GenderCARE is a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics.
arXiv Detail & Related papers (2024-08-22T15:35:46Z) - Mask-up: Investigating Biases in Face Re-identification for Masked Faces [7.73812434373948]
Face Recognition Systems (FRSs) are now widely distributed and deployed as ML solutions all over the world.
Extensive biases have been reported against marginalized groups in these systems and have led to highly discriminatory outcomes.
This study shows that developers, lawmakers and users of such services need to rethink the design principles behind FRSs.
arXiv Detail & Related papers (2024-02-21T12:48:45Z) - Towards Fair Face Verification: An In-depth Analysis of Demographic
Biases [11.191375513738361]
Deep learning-based person identification and verification systems have remarkably improved in terms of accuracy in recent years.
However, such systems have been found to exhibit significant biases related to race, age, and gender.
This paper presents an in-depth analysis, with a particular emphasis on the intersectionality of these demographic factors.
arXiv Detail & Related papers (2023-07-19T14:49:14Z) - Counter-GAP: Counterfactual Bias Evaluation through Gendered Ambiguous
Pronouns [53.62845317039185]
Bias-measuring datasets play a critical role in detecting biased behavior of language models.
We propose a novel method to collect diverse, natural, and minimally distant text pairs via counterfactual generation.
We show that four pre-trained language models are significantly more inconsistent across different gender groups than within each group.
arXiv Detail & Related papers (2023-02-11T12:11:03Z) - Gender Stereotyping Impact in Facial Expression Recognition [1.5340540198612824]
In recent years, machine learning-based models have become the most popular approach to Facial Expression Recognition (FER)
In publicly available FER datasets, apparent gender representation is usually mostly balanced, but their representation in the individual label is not.
We generate derivative datasets with different amounts of stereotypical bias by altering the gender proportions of certain labels.
We observe a discrepancy in the recognition of certain emotions between genders of up to $29 %$ under the worst bias conditions.
arXiv Detail & Related papers (2022-10-11T10:52:23Z) - A Deep Dive into Dataset Imbalance and Bias in Face Identification [49.210042420757894]
Media portrayals often center imbalance as the main source of bias in automated face recognition systems.
Previous studies of data imbalance in FR have focused exclusively on the face verification setting.
This work thoroughly explores the effects of each kind of imbalance possible in face identification, and discuss other factors which may impact bias in this setting.
arXiv Detail & Related papers (2022-03-15T20:23:13Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Fairness Through Robustness: Investigating Robustness Disparity in Deep
Learning [61.93730166203915]
We argue that traditional notions of fairness are not sufficient when the model is vulnerable to adversarial attacks.
We show that measuring robustness bias is a challenging task for DNNs and propose two methods to measure this form of bias.
arXiv Detail & Related papers (2020-06-17T22:22:24Z) - Face Recognition: Too Bias, or Not Too Bias? [45.404162391012726]
We reveal critical insights into problems of bias in state-of-the-art facial recognition systems.
We show variations in the optimal scoring threshold for face-pairs across different subgroups.
We also do a human evaluation to measure the bias in humans, which supports the hypothesis that such bias exists in human perception.
arXiv Detail & Related papers (2020-02-16T01:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.