J-CHAT: Japanese Large-scale Spoken Dialogue Corpus for Spoken Dialogue Language Modeling
- URL: http://arxiv.org/abs/2407.15828v1
- Date: Mon, 22 Jul 2024 17:46:50 GMT
- Title: J-CHAT: Japanese Large-scale Spoken Dialogue Corpus for Spoken Dialogue Language Modeling
- Authors: Wataru Nakata, Kentaro Seki, Hitomi Yanaka, Yuki Saito, Shinnosuke Takamichi, Hiroshi Saruwatari,
- Abstract summary: Spoken dialogue plays a crucial role in human-AI interactions, necessitating dialogue-oriented spoken language models (SLMs)
To ensure hiqh-quality speech generation, the data must be spontaneous like in-wild data and must be acoustically clean with noise removed.
This study addresses this gap by constructing and releasing a large-scale spoken dialogue corpus, named Japanese Corpus for Human-AI Talks (J-CHAT)
This paper presents a language-independent method for corpus construction and describes experiments on dialogue generation using SLMs trained on J-CHAT.
- Score: 43.87842102048749
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spoken dialogue plays a crucial role in human-AI interactions, necessitating dialogue-oriented spoken language models (SLMs). To develop versatile SLMs, large-scale and diverse speech datasets are essential. Additionally, to ensure hiqh-quality speech generation, the data must be spontaneous like in-wild data and must be acoustically clean with noise removed. Despite the critical need, no open-source corpus meeting all these criteria has been available. This study addresses this gap by constructing and releasing a large-scale spoken dialogue corpus, named Japanese Corpus for Human-AI Talks (J-CHAT), which is publicly accessible. Furthermore, this paper presents a language-independent method for corpus construction and describes experiments on dialogue generation using SLMs trained on J-CHAT. Experimental results indicate that the collected data from multiple domains by our method improve the naturalness and meaningfulness of dialogue generation.
Related papers
- Investigating the Effects of Large-Scale Pseudo-Stereo Data and Different Speech Foundation Model on Dialogue Generative Spoken Language Model [47.67067056593085]
We develop a pipeline capable of transforming single-channel dialogue data into pseudo-stereo data.
This expanded our training dataset from a mere 2,000 to an impressive 17,600 hours.
The inclusion of this pseudo-stereo data has proven to be effective in improving the performance of spoken dialogue language models.
arXiv Detail & Related papers (2024-07-02T03:22:41Z) - Integrating Paralinguistics in Speech-Empowered Large Language Models for Natural Conversation [46.93969003104427]
This paper introduces an extensive speech-text LLM framework, the Unified Spoken Dialog Model (USDM)
USDM is designed to generate coherent spoken responses with naturally occurring prosodic features relevant to the given input speech.
Our approach effectively generates natural-sounding spoken responses, surpassing previous and cascaded baselines.
arXiv Detail & Related papers (2024-02-08T14:35:09Z) - SPECTRUM: Speaker-Enhanced Pre-Training for Long Dialogue Summarization [48.284512017469524]
Multi-turn dialogues are characterized by their extended length and the presence of turn-taking conversations.
Traditional language models often overlook the distinct features of these dialogues by treating them as regular text.
We propose a speaker-enhanced pre-training method for long dialogue summarization.
arXiv Detail & Related papers (2024-01-31T04:50:00Z) - Towards Joint Modeling of Dialogue Response and Speech Synthesis based
on Large Language Model [8.180382743037082]
This paper explores the potential of constructing an AI spoken dialogue system that "thinks how to respond" and "thinks how to speak" simultaneously.
arXiv Detail & Related papers (2023-09-20T01:48:27Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZ is a large-scale speech-text dataset for spoken TOD.
Cross-turn slot and reasoning slot detection are new challenges for SpokenWOZ.
arXiv Detail & Related papers (2023-05-22T13:47:51Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - Learning-by-Narrating: Narrative Pre-Training for Zero-Shot Dialogue
Comprehension [48.483910831143724]
Comprehending a dialogue requires a model to capture diverse kinds of key information in the utterances.
We develop a novel narrative-guided pre-training strategy that learns by narrating the key information from a dialogue input.
arXiv Detail & Related papers (2022-03-19T05:20:25Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.