Inequalities in Computational Thinking Among Incoming Students in an STEM Chilean University
- URL: http://arxiv.org/abs/2407.15833v1
- Date: Mon, 22 Jul 2024 17:51:15 GMT
- Title: Inequalities in Computational Thinking Among Incoming Students in an STEM Chilean University
- Authors: Felipe González-Pizarro, Claudia López, Andrea Vásquez, Carlos Castro,
- Abstract summary: This article characterizes the computational thinking abilities of incoming students at a Chilean university with a strong emphasis on STEM disciplines.
Based on more than 500 responses, this study provides evidence of significant inequalities in computational thinking across gender, type of school (private or no), and prior programming knowledge.
The findings can enlighten upcoming research endeavors and formulate strategies to create a more equitable field for students entering STEM degrees in nations facing similar circumstances.
- Score: 1.2549535267918006
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While computational thinking arises as an essential skill worldwide, formal primary and secondary education in Latin America rarely incorporates mechanisms to develop it in their curricula. The extent to which students in the region acquire computational thinking skills remains largely unknown. To start addressing this void, this article presents findings from a cross-sectional study that characterizes the computational thinking abilities of incoming students at a Chilean university with a strong emphasis on STEM disciplines. Based on more than 500 responses, this study provides evidence of significant inequalities in computational thinking across gender, type of school (private or no), and prior programming knowledge. The discussion offers insights into how these disparities relate to contextual factors of the country, such as a highly socio-economically segregated educational system, public policies focused mainly on technology access, and heavy reliance on voluntary initiatives, to develop computational thinking. The findings can enlighten upcoming research endeavors and formulate strategies to create a more equitable field for students entering STEM degrees in nations facing similar circumstances.
Related papers
- Public Computing Intellectuals in the Age of AI Crisis [0.0]
This position paper endeavors to do so in four sections.
The first explores what is at stake for computing in the narrative of an AI crisis.
The second articulates possible educational responses to this crisis.
The third section presents a novel characterization of academic computing's field of practice.
arXiv Detail & Related papers (2024-05-01T20:48:34Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - A machine learning approach to predict university enrolment choices through students' high school background in Italy [42.57210316104905]
This paper explores the influence of Italian high school students' proficiency in mathematics and the Italian language on their university enrolment choices.
We investigate potential gender differences in response to similar previous educational choices and achievements.
The findings shed light on the complex interplay of academic proficiency, gender, and high school background in shaping students' choices regarding university education.
arXiv Detail & Related papers (2024-02-29T10:05:37Z) - The Compute Divide in Machine Learning: A Threat to Academic
Contribution and Scrutiny? [1.0985060632689174]
We show that a compute divide has coincided with a reduced representation of academic-only research teams in compute intensive research topics.
To address the challenges arising from this trend, we recommend approaches aimed at thoughtfully expanding academic insights.
arXiv Detail & Related papers (2024-01-04T01:26:11Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Sustainability in Computing Education: A Systematic Literature Review [0.0]
This paper describes approaches taken in computing education to address the issue of sustainability.
From a set of 572 publications extracted from six large digital libraries plus snowballing, we distilled and analyzed the 90 relevant primary studies.
We present a framework capturing learning objectives and outcomes as well as pedagogical methods for sustainability in computing education.
arXiv Detail & Related papers (2023-05-17T16:51:37Z) - Investigating Participation Mechanisms in EU Code Week [68.8204255655161]
Digital competence (DC) is a broad set of skills, attitudes, and knowledge for confident, critical and use of digital technologies.
The aim of the manuscript is to offer a detailed and comprehensive statistical description of Code Week's participation in the EU Member States.
arXiv Detail & Related papers (2022-05-29T19:16:03Z) - Scientia Potentia Est -- On the Role of Knowledge in Computational
Argumentation [52.903665881174845]
We propose a pyramid of types of knowledge required in computational argumentation.
We briefly discuss the state of the art on the role and integration of these types in the field.
arXiv Detail & Related papers (2021-07-01T08:12:41Z) - Do Abstractions Have Politics? Toward a More Critical Algorithm Analysis [19.08810272234958]
We argue for affordance analysis, a more critical algorithm analysis based on an affordance account of value embedding.
We illustrate 5 case studies of how affordance analysis refutes social determination of technology.
arXiv Detail & Related papers (2021-01-04T05:59:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.