Decoding Digital Influence: The Role of Social Media Behavior in Scientific Stratification Through Logistic Attribution Method
- URL: http://arxiv.org/abs/2407.15854v1
- Date: Tue, 23 Jul 2024 02:01:40 GMT
- Title: Decoding Digital Influence: The Role of Social Media Behavior in Scientific Stratification Through Logistic Attribution Method
- Authors: Yang Yue,
- Abstract summary: This study comprehensively analyzes the impact of social media on scientific stratification and mobility.
It uses an Explainable Logistic Analysis from a meso-level perspective to explore the correlation between social media behaviors and scientific social stratification.
- Score: 6.285608271780605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific social stratification is a classic theme in the sociology of science. The deep integration of social media has bridged the gap between scientometrics and sociology of science. This study comprehensively analyzes the impact of social media on scientific stratification and mobility, delving into the complex interplay between academic status and social media activity in the digital age. [Research Method] Innovatively, this paper employs An Explainable Logistic Attribution Analysis from a meso-level perspective to explore the correlation between social media behaviors and scientific social stratification. It examines the impact of scientists' use of social media in the digital age on scientific stratification and mobility, uniquely combining statistical methods with machine learning. This fusion effectively integrates hypothesis testing with a substantive interpretation of the contribution of independent variables to the model. [Research Conclusion] Empirical evidence demonstrates that social media promotes stratification and mobility within the scientific community, revealing a nuanced and non-linear facilitation mechanism. Social media activities positively impact scientists' status within the scientific social hierarchy to a certain extent, but beyond a specific threshold, this impact turns negative. It shows that the advent of social media has opened new channels for academic influence, transcending the limitations of traditional academic publishing, and prompting changes in scientific stratification. Additionally, the study acknowledges the limitations of its experimental design and suggests future research directions.
Related papers
- Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks [45.58331196717468]
This research presents a framework for analyzing the dynamics of online communities in social media platforms.
By combining text classification and dynamic social network analysis, we uncover mechanisms driving community formation and evolution.
arXiv Detail & Related papers (2024-09-18T03:03:02Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
We examined over 16,000 papers from selected conferences in multimodal interaction, affective computing, and natural language processing.
We identify 910 affect-related papers and present our analysis of the role of affective phenomena in these papers.
We find limited research on how affect and emotion predictions might be used by AI systems to enhance machine understanding of human social behaviors and cognitive states.
arXiv Detail & Related papers (2023-05-18T09:08:39Z) - Executive Voiced Laughter and Social Approval: An Explorative Machine
Learning Study [56.03830131919201]
We study voiced laughter in executive communication and its effect on social approval.
Our findings contribute to research at the nexus of executive communication, strategic leadership, and social evaluations.
arXiv Detail & Related papers (2023-05-16T14:39:00Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Yourfeed: Towards open science and interoperable systems for social
media [1.8623205938004257]
Existing social media platforms make it incredibly difficult for researchers to conduct studies on social media.
To close the gap, we introduce Yourfeed, a research tool for conducting ecologically valid social media research.
arXiv Detail & Related papers (2022-07-15T13:49:51Z) - Predicting Opinion Dynamics via Sociologically-Informed Neural Networks [31.77040611129394]
We present Sociologically-Informed Neural Network (SINN), which integrates theoretical models and social media data.
In particular, we recast theoretical models as ordinary differential equations (ODEs)
We train a neural network that simultaneously approximates the data and conforms to the ODEs that represent the social scientific knowledge.
arXiv Detail & Related papers (2022-07-07T05:55:47Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - The Homophily Principle in Social Network Analysis [13.039459168820901]
Homophily is the tendency of like-minded people to interact with one another in social groups.
The study of homophily can provide eminent insights into the flow of information and behaviors within a society.
arXiv Detail & Related papers (2020-08-21T05:43:59Z) - A Simulation Model Demonstrating the Impact of Social Aspects on Social
Internet of Things [0.0]
This paper studies the impact of social behavior on the interaction pattern of social objects.
The model proposed in this paper studies the implications of competitive vs. cooperative social paradigm.
It is proved that cooperative strategy is more efficient than competitive strategy.
arXiv Detail & Related papers (2020-02-23T07:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.