On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models
- URL: http://arxiv.org/abs/2407.16405v1
- Date: Tue, 23 Jul 2024 11:49:58 GMT
- Title: On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models
- Authors: Deniz Daum, Richard Osuala, Anneliese Riess, Georgios Kaissis, Julia A. Schnabel, Maxime Di Folco,
- Abstract summary: This study addresses challenges for 3D cardiac MRI images in the short-axis view.
We propose Latent Diffusion Models that generate synthetic images conditioned on medical attributes.
We finetune our models with differential privacy on the UK Biobank dataset.
- Score: 5.966954237899151
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generally, the small size of public medical imaging datasets coupled with stringent privacy concerns, hampers the advancement of data-hungry deep learning models in medical imaging. This study addresses these challenges for 3D cardiac MRI images in the short-axis view. We propose Latent Diffusion Models that generate synthetic images conditioned on medical attributes, while ensuring patient privacy through differentially private model training. To our knowledge, this is the first work to apply and quantify differential privacy in 3D medical image generation. We pre-train our models on public data and finetune them with differential privacy on the UK Biobank dataset. Our experiments reveal that pre-training significantly improves model performance, achieving a Fr\'echet Inception Distance (FID) of 26.77 at $\epsilon=10$, compared to 92.52 for models without pre-training. Additionally, we explore the trade-off between privacy constraints and image quality, investigating how tighter privacy budgets affect output controllability and may lead to degraded performance. Our results demonstrate that proper consideration during training with differential privacy can substantially improve the quality of synthetic cardiac MRI images, but there are still notable challenges in achieving consistent medical realism.
Related papers
- FedDP: Privacy-preserving method based on federated learning for histopathology image segmentation [2.864354559973703]
This paper addresses the dispersed nature and privacy sensitivity of medical image data by employing a federated learning framework.
The proposed method, FedDP, minimally impacts model accuracy while effectively safeguarding the privacy of cancer pathology image data.
arXiv Detail & Related papers (2024-11-07T08:02:58Z) - Privacy Preserving Federated Learning in Medical Imaging with Uncertainty Estimation [15.63535423357971]
Machine learning (ML) and Artificial Intelligence (AI) have fueled remarkable advancements, particularly in healthcare. Within medical imaging, ML models hold the promise of improving disease diagnoses, treatment planning, and post-treatment monitoring.
Privacy concerns surrounding patient data hinder the assembly of large training datasets needed for developing and training accurate, robust, and generalizable models.
Federated Learning (FL) emerges as a compelling solution, enabling organizations to collaborate on ML model training by sharing model training information (gradients) rather than data (e.g., medical images)
arXiv Detail & Related papers (2024-06-18T17:35:52Z) - OpticalDR: A Deep Optical Imaging Model for Privacy-Protective
Depression Recognition [66.91236298878383]
Depression Recognition (DR) poses a considerable challenge, especially in the context of privacy concerns.
We design a new imaging system to erase the identity information of captured facial images while retain disease-relevant features.
It is irreversible for identity information recovery while preserving essential disease-related characteristics necessary for accurate DR.
arXiv Detail & Related papers (2024-02-29T01:20:29Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
We develop controllable diffusion models for medical image synthesis, called EMIT-Diff.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
In our approach, we ensure that the synthesized samples adhere to medically relevant constraints.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Conditional Diffusion Models for Semantic 3D Brain MRI Synthesis [0.0]
We introduce Med-DDPM, a diffusion model designed for 3D semantic brain MRI synthesis.
It effectively tackles data scarcity and privacy issues by integrating semantic conditioning.
It generates diverse, coherent images with high visual fidelity.
arXiv Detail & Related papers (2023-05-29T04:14:38Z) - Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging [47.99192239793597]
We evaluated the effect of privacy-preserving training of AI models regarding accuracy and fairness compared to non-private training.
Our study shows that -- under the challenging realistic circumstances of a real-life clinical dataset -- the privacy-preserving training of diagnostic deep learning models is possible with excellent diagnostic accuracy and fairness.
arXiv Detail & Related papers (2023-02-03T09:49:13Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
Collaborative machine learning techniques such as federated learning (FL) enable the training of models on effectively larger datasets without data transfer.
Recent initiatives have demonstrated that segmentation models trained with FL can achieve performance similar to locally trained models.
However, FL is not a fully privacy-preserving technique and privacy-centred attacks can disclose confidential patient data.
arXiv Detail & Related papers (2021-07-06T12:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.