DreamVTON: Customizing 3D Virtual Try-on with Personalized Diffusion Models
- URL: http://arxiv.org/abs/2407.16511v1
- Date: Tue, 23 Jul 2024 14:25:28 GMT
- Title: DreamVTON: Customizing 3D Virtual Try-on with Personalized Diffusion Models
- Authors: Zhenyu Xie, Haoye Dong, Yufei Gao, Zehua Ma, Xiaodan Liang,
- Abstract summary: Image-based 3D Virtual Try-ON (VTON) aims to sculpt the 3D human according to person and clothes images.
Recent text-to-3D methods achieve remarkable improvement in high-fidelity 3D human generation.
We propose a novel customizing 3D human try-on model, named textbfDreamVTON, to separately optimize the geometry and texture of the 3D human.
- Score: 56.55549019625362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based 3D Virtual Try-ON (VTON) aims to sculpt the 3D human according to person and clothes images, which is data-efficient (i.e., getting rid of expensive 3D data) but challenging. Recent text-to-3D methods achieve remarkable improvement in high-fidelity 3D human generation, demonstrating its potential for 3D virtual try-on. Inspired by the impressive success of personalized diffusion models (e.g., Dreambooth and LoRA) for 2D VTON, it is straightforward to achieve 3D VTON by integrating the personalization technique into the diffusion-based text-to-3D framework. However, employing the personalized module in a pre-trained diffusion model (e.g., StableDiffusion (SD)) would degrade the model's capability for multi-view or multi-domain synthesis, which is detrimental to the geometry and texture optimization guided by Score Distillation Sampling (SDS) loss. In this work, we propose a novel customizing 3D human try-on model, named \textbf{DreamVTON}, to separately optimize the geometry and texture of the 3D human. Specifically, a personalized SD with multi-concept LoRA is proposed to provide the generative prior about the specific person and clothes, while a Densepose-guided ControlNet is exploited to guarantee consistent prior about body pose across various camera views. Besides, to avoid the inconsistent multi-view priors from the personalized SD dominating the optimization, DreamVTON introduces a template-based optimization mechanism, which employs mask templates for geometry shape learning and normal/RGB templates for geometry/texture details learning. Furthermore, for the geometry optimization phase, DreamVTON integrates a normal-style LoRA into personalized SD to enhance normal map generative prior, facilitating smooth geometry modeling.
Related papers
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
The challenge of accurately inferring texture remains, particularly in obscured areas such as the back of a person in frontal-view images.
This limitation in texture prediction largely stems from the scarcity of large-scale and diverse 3D datasets.
We propose leveraging extensive 2D fashion datasets to enhance both texture and shape prediction in 3D human digitization.
arXiv Detail & Related papers (2024-10-13T01:25:05Z) - Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
We present En3D, an enhanced izable scheme for high-qualityd 3D human avatars.
Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalance viewing angles and pose priors, our approach aims to develop a zero-shot 3D capable of producing 3D humans.
arXiv Detail & Related papers (2024-01-02T12:06:31Z) - X-Dreamer: Creating High-quality 3D Content by Bridging the Domain Gap Between Text-to-2D and Text-to-3D Generation [61.48050470095969]
X-Dreamer is a novel approach for high-quality text-to-3D content creation.
It bridges the gap between text-to-2D and text-to-3D synthesis.
arXiv Detail & Related papers (2023-11-30T07:23:00Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - Efficient Text-Guided 3D-Aware Portrait Generation with Score
Distillation Sampling on Distribution [28.526714129927093]
We propose DreamPortrait, which aims to generate text-guided 3D-aware portraits in a single-forward pass for efficiency.
We further design a 3D-aware gated cross-attention mechanism to explicitly let the model perceive the correspondence between the text and the 3D-aware space.
arXiv Detail & Related papers (2023-06-03T11:08:38Z) - Structured 3D Features for Reconstructing Controllable Avatars [43.36074729431982]
We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface.
We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation.
arXiv Detail & Related papers (2022-12-13T18:57:33Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
We propose a novel optimization-based paradigm for 3D human model fitting on images and scans.
Our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art.
LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.
arXiv Detail & Related papers (2022-05-12T17:55:51Z) - UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body
Decoupling 3D Model [58.70130563417079]
We introduce a new 3D human-body model with a series of decoupled parameters that could freely control the generation of the body.
Compared to the existing manually annotated DensePose-COCO dataset, the synthetic UltraPose has ultra dense image-to-surface correspondences without annotation cost and error.
arXiv Detail & Related papers (2021-10-28T16:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.